Skip to main content
Log in

Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trichoderma is an anamorphic filamentous fungal genus with immense potential for production of small valuable secondary metabolites with indispensable biological activities. Microbial dynamics of a psychrotrophic strain Trichoderma velutinum ACR-P1, isolated from unexplored niches of the Shiwalik region, bestowed with rich biodiversity of microflora, was investigated for production of nonribosomal peptides (NRPs) by metabolite profiling by intact-cell mass spectrometry (ICMS) employing matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometer. Being the first report on NRPs production by T. velutinum, studies on optimization of growth conditions by Response Surface Methodology (RSM) for production of NRPs by ACR-P1 was carried out strategically. Multifold enhancement in the yield of NRPs belonging to subfamily SF4 with medium chain of amino acid residues having m/z 1437.9, 1453.9, and 1452.0 at pH 5.9 at 20 °C and of subfamily SF1 with long-chain amino acid residues having m/z 1770.2, 1784.2, 1800.1, 1802.1, and 1815.1 was achieved at pH 7.0 at 25 °C. Complexities of natural mixtures were thus considerably reduced under respective optimized culture conditions accelerating the production of novel microbial natural products by saving time and resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arabi S, Sohrabi MR (2013) Experimental design and response surface modelling for optimization of vat dye from water by nano zero valent iron (NZVI). Acta Chim Slov 60:853–860

    CAS  PubMed  Google Scholar 

  • Bissett J, Szakacs G, Nolan CA, Druzhinina I, Gradinger C, Kubicek CP (2003) New species of Trichoderma from Asia. Can J Bot 81(6):570–586

    Article  Google Scholar 

  • Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Bio Chem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Kapuganti JG, Viterbo A (2010) Trichoderma. Curr Biol 20(9):R390–R391

    Article  CAS  PubMed  Google Scholar 

  • Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    Article  CAS  PubMed  Google Scholar 

  • Chalupova J, Raus M, Sedlarova M, Sebela M (2014) Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 32(1):230–241

    Article  CAS  PubMed  Google Scholar 

  • Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570

    Article  CAS  PubMed  Google Scholar 

  • Chutrakul C, Alcocer M, Bailey K, Peberdy JF (2008) The production and characterisation of trichotoxin peptaibols, by Trichoderma asperellum. Chem Biodivers 5(9):1694–1706

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043

    Article  CAS  PubMed  Google Scholar 

  • Daniel JF, Filho ER (2007) Peptaibols of Trichoderma. Nat Prod Rep 24:1128–1141

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb T, Berg A, Gams W, Schlegel B, Gräfe U (2003) The occurrence of peptaibols and structurally related peptaibiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J Pept Sci 9(11–12):666–678

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb T, von Dohren H, Nielsen KF, Samuels GJ, Bruckner H (2008a) Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers 5:671–680

    Article  CAS  PubMed  Google Scholar 

  • Degenkolb T, Gams W, Bruckner H (2008b) Natural cyclopeptaibiotics and related cyclic tetrapeptides: structural diversity and future prospects. Chem Biodivers 5:693–706

    Article  CAS  PubMed  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Shen W, Cheung MTW, Liang Y, Cheung HY, Allmaier G, Au OKC, Lam YW (2011) Rapid detection of apoptosis in mammalian cells by using intact cell MALDI mass spectrometry. Analyst 136:5181–5189

    Article  CAS  PubMed  Google Scholar 

  • Feenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20:157–171

    Article  Google Scholar 

  • Figueroa M, Raja H, Falkinham JO III, Adcock AF, Kroll DJ, Wani MC, Pearce CJ, Oberlies NH (2013) Peptaibols, tetramic acid derivatives, isocoumarins, and sesquiterpenes from a Bionectria sp. (MSX 47401). J Nat Prod 76(6):1007–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep 10:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubicek CP, Komon-Zelazowska M, Sandor E, Druzhinina IS (2007) Facts and challenges in the understanding of the biosynthesis of peptaibols by Trichoderma. Chem Biodivers 4:1068–1082

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kumar V, Bhalla TC (2015) Statistical enhancement of cyanide degradation using microbial consortium. J Microbial Biochem Technol 7(6):344-350

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol 48:395–417

    Article  CAS  PubMed  Google Scholar 

  • Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15(12):799–807

    Article  CAS  PubMed  Google Scholar 

  • Maddau L, Cabras A, Franceschini A, Linaldeddu BT, Crobu S, Roggio T, Pagnozzi D (2009) Occurrence and characterization of peptaibols from Trichoderma citrinoviride, an endophytic fungus of cork oak, using electrospray ionization quadrupole time-of-flight mass spectrometry. Microbiology 155:3371–3381

    Article  CAS  PubMed  Google Scholar 

  • Mendes GO, Rego NM, Da Silva M, Anastacio TC, Vassilev NB, Ribeiro JI, Da Silva IR, MD C (2015) Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Microb Biotechnol 8(6):930–939

    Article  CAS  PubMed Central  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma—a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286(6):4544–4554

    Article  CAS  PubMed  Google Scholar 

  • Myers RH, Montgomery DC (2002) Response surface methodology, vol 55, 2nd edn. John Wiley and Sons Inc., New York, pp. 182–191

    Google Scholar 

  • Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, von Döhren H (2007a) Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures? Microbiology 153(10):3417–3437

    Article  CAS  PubMed  Google Scholar 

  • Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, Nakari-Setälä T, Penttilä M, von Döhren H (2007b) Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J 274(3):841–852

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. Nat Prod Rep 75:311–335

    Article  CAS  Google Scholar 

  • Nielsen KF, Larsen TO (2015) The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front Microbiol 2015:6

    Google Scholar 

  • Oh SU, Yun BS, Lee SJ, Kim JH, Yoo ID (2002) Atroviridins AC and neoatroviridins AD, novel peptaibol antibiotics produced by Trichoderma atroviride F80317. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 55(6):557–564

    Article  CAS  PubMed  Google Scholar 

  • Peltola J, Ritieni A, Mikkola R, Grigoriev PA, Pócsfalvi G, Andersson MA, Salkinoja-Salonen MS (2004) Biological effects of Trichoderma harzianum peptaibols on mammalian cells. Appl Environ Microbiol 70(8):4996–5004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier L, Quiniou F, Ruiz N, Montagu M, Amiard JC, Pouchus YF (2007) Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos. Aquat Toxicol 83(4):254–262

    Article  CAS  PubMed  Google Scholar 

  • Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20(12):3658–3563

    Article  CAS  PubMed  Google Scholar 

  • Raeder U, Broda P (2008) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sang Y, Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev 9(02):227–235

    Article  PubMed  Google Scholar 

  • Santos C, Paterson RR, Venancio A, Lima N (2010) Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Appl Microbiol 108(2):375–385

    Article  CAS  PubMed  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi M, Wang HN, Xie ST, Luo Y, Sun CY, Chen XL, Zhang YZ (2010) Antimicrobial peptaibols, novel suppressors of tumor cells, targeted calcium-mediated apoptosis and autophagy in human hepatocellular carcinoma cells. Mol Cancer 9(1):1

    Article  Google Scholar 

  • Szekeres A, Leitgeb B, Kredics L, Antal Z, Hatvani L, Manczinger L, Vágvölgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiol Immunol Hung 52(2):137–168

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh-Boyo GM, Wul SS, Basile F (2012) Analysis of microbial mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 84:9971–9980

    Article  CAS  PubMed  Google Scholar 

  • Toniolo H, Bruckner H (2009) Peptaibiotics—fungal peptides containing α-dialkyl α-amino acids. Verlag Helvetica Chimica Acta, Zurich

    Google Scholar 

  • Wada S, Iida A, Akimoto N, Kanai M, Toyama N, Fujita T (1995) Fungal metabolites. XIX. Structural elucidation of channel-forming peptides, trichorovins-I-XIV, from the fungus Trichoderma viride. Chem Pharm Bull 43(6):910–915

    Article  CAS  PubMed  Google Scholar 

  • Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  PubMed  Google Scholar 

  • Wunschel SC, Jarman KH, Petersen CE, Valentine NB, Wahl KL (2005) Bacterial analysis by MALDI-TOF mass spectrometry: an inter-laboratory comparison. J Am Soc Mass Spectrom 16:456–462

    Article  CAS  PubMed  Google Scholar 

  • Yusuf F, Chaubey A, Raina A, Jamwal U, Parshad R (2013) Enhancing nitrilase production from Fusarium proliferatum using response surface methodology. SpringerPlus 2:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Huang H, Xu S, Wang B, Ju J, Tan H, Li W (2015) Activation and enhancement of fredericamycin A production in deep sea-derived Streptomyces somaliensis SCSIO ZH66 by using ribosome engineering and response surface methodology. Microb Cell Factories 14:64

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding received from Council of Scientific and Industrial Research (CSIR) under 12th FYP project “Plant-Microbe and Soil Interactions (PMSI).” RS and VPS thank CSIR for providing SRF. This manuscript bears institutional communication number IIIM/1920/2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deepika Singh or Asha Chaubey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The article does not include any work conducted on human participants or animals by any authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Singh, V.P., Singh, D. et al. Optimization of nonribosomal peptides production by a psychrotrophic fungus: Trichoderma velutinum ACR-P1. Appl Microbiol Biotechnol 100, 9091–9102 (2016). https://doi.org/10.1007/s00253-016-7622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7622-5

Keywords

Navigation