Skip to main content
Log in

Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A cadmium-resistant bacterium was isolated from industrial wastewater and identified as Escherichia coli (dubbed as P4) on the basis of morphological, biochemical tests and 16S rRNA ribotyping. It showed optimum growth at 30 °C and pH 7. E. coli P4 found to resist Cd+2 (10.6 mM) as well as Zn+2 (4.4 mM), Pb+2 (17 mM), Cu+2 (3.5 mM), Cr+6 (4.4 mM), As+2 (10.6 mM), and Hg+2 (0.53 mM). It could remove 18.8, 37, and 56 % Cd+2 from aqueous medium after 48, 96, and 144 h, respectively. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and Energy-dispersive X-ray (EDX) analysis also confirmed the biosorption of Cd+2 by E. coli P4. However, temperature and pH were found to be the most critical factors in biosorption of Cd+2 by E. coli P4. Cd+2 stress altered E. coli P4 cell physiology analyzed by measuring glutathione (GSH) and non-protein thiol (cysteine) levels which were increased up to 130 and 48 %, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) showed alteration in the expression levels of ftsZ, mutS, clpB, ef-tu, and dnaK genes in the presence of Cd+2. Total protein profiles of E. coli P4 in the absence and presence of Cd+2 were compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which showed remarkable difference in the banding pattern. czcB gene, a component of czcCBA operon, was amplified from genomic DNA which suggested the chromosomal-borne Cd+2 resistance in E. coli P4. Furthermore, it harbors smtAB gene which plays a significant role in Cd+2 resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam V, Chudobova D, Tmejova K, Cihalova K, Krizkova S, Guran R, Kominkova M, Zurek M, Kremplova M, Jimenez AMJ (2014) An effect of cadmium and lead ions on Escherichia coli with the cloned gene for metallothionein (MT-3) revealed by electrochemistry. Electrochim Acta 140:11–19

    Article  CAS  Google Scholar 

  • Aksoy E, Salazar J, Koiwa H (2014) Cadmium determinant 1 is a putative heavy-metal transporter in Arabidopsis thaliana. FASEB J 28:617–624

    Google Scholar 

  • Ansari MI, Malik A (2007) Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresour Technol 98:3149–3153

    Article  CAS  PubMed  Google Scholar 

  • Brocklehurst KR, Morby AP (2000) Metal-ion tolerance in Escherichia coli: analysis of transcriptional profiles by gene-array technology. Microbiology 146:2277–2282

    Article  CAS  PubMed  Google Scholar 

  • Carpene E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21:35–39

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty R, Banerjee PC (2008) Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles 12:279–284

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty R, Banerjee PC (2012) Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresour Technol 108:176–183

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi AK, Mishra A, Tiwari V, Jha B (2012) Cloning and transcript analysis of type 2 metallothionein gene (SbMT 2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 499:280–287

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Tian H, Zhao D, Lu L, Wang Y, Chen J, Liu X, Jia W, Huang Z (2014) Atmospheric emission inventory of cadmium from anthropogenic sources. Int J Environ Sci Technol 11:605–616

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81:768–775

    CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2007) A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 41:8281–8287

    Article  CAS  PubMed  Google Scholar 

  • Deokar AR, Lin L-Y, Chang C-C, Ling Y-C (2013) Single-walled carbon nanotube coated antibacterial paper: preparation and mechanistic study. J Mater Chem B 1:2639–2646

    Article  CAS  Google Scholar 

  • Durve A, Naphade S, Bhot M, Varghese J, Chandra N (2013) Plasmid curing and protein profiling of heavy metal tolerating bacterial isolates. Arch Appl Sci Res 5:46–54

    Google Scholar 

  • El-Helow E, Sabry S, Amer R (2000) Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals 13:273–280

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Aldrich C (2004) Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy 73:1–10

    Article  CAS  Google Scholar 

  • Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    Article  CAS  Google Scholar 

  • Gibbons SM, Feris K, McGuirl MA, Morales SE, Hynninen A, Ramsey PW, Gannon JE (2011) Use of microcalorimetry to determine the costs and benefits to Pseudomonas putida strain kt2440 of harboring cadmium efflux genes. Appl Environ Microbiol 77:108–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hassan SH, Kim S-J, Jung A-Y, Joo JH, Eun Oh S, Yang JE (2009) Biosorptive capacity of Cd (II) and Cu (II) by lyophilized cells of Pseudomonas stutzeri. J Gen Appl Microbiol 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–688

    Article  CAS  PubMed  Google Scholar 

  • Helbig K, Bleuel C, Krauss GJ, Nies DH (2008) Glutathione and transition-metal homeostasis in Escherichia coli. J Bacteriol 190:5431–5438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang F, Dang Z, Guo C-L, Lu G-N, Gu RR, Liu H-J, Zhang H (2013) Biosorption of Cd (II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B: Biointerfaces 107:11–18

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Guo C-L, Lu G-N, Yi X-Y, Zhu L-D, Dang Z (2014) Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere 109:134–142

    Article  CAS  PubMed  Google Scholar 

  • Intorne AC, de Oliveira MVV, de M Pereira L, de Souza Filho GA (2012) Essential role of the czc determinant for cadmium, cobalt and zinc resistance in Gluconacetobacter diazotrophicus PAl 5. Int Microbiol 15:69–78

    CAS  PubMed  Google Scholar 

  • Jain S, Bhatt A (2013) Molecular and in situ characterization of cadmium-resistant diversified extremophilic strains of Pseudomonas for their bioremediation potential. 3. Biotech 4:297–304

    Google Scholar 

  • Kafilzadeh F, Moghtaderi Y, Jahromi AR (2013) Isolation and identification of cadmium-resistant bacteria in Soltan Abad river sediments and determination of tolerance of bacteria through MIC and MBC. Europ J Exp Biol 3:268–273

    Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kunkel TA, Erie DA (2005) DNA mismatch repair*. Annu Rev Biochem 74:681–710

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  PubMed  Google Scholar 

  • Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361

  • Lu W-B, Shi J-J, Wang C-H, Chang J-S (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86

    Article  CAS  PubMed  Google Scholar 

  • Maynaud G, Brunel B, Yashiro E, Mergeay M, Cleyet-Marel JC, Le Quere A (2014) CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a P(IB-2)-type ATPase involved in cadmium and zinc resistance. Res Microbiol 165:175–189

  • Meister A, Anderson ME (1983) Glutathione. Annual Rev Biochem 52:711–760

    Article  CAS  Google Scholar 

  • Naz N, Young HK, Ahmed N, Gadd GM (2005) Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Appl Environ Microbiol 71:4610–4618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Nordberg GF (2004) Cadmium and health in the 21st century–historical remarks and trends for the future. Biometals 17:485–489

    Article  CAS  PubMed  Google Scholar 

  • Olasumbo L, Barton MD (2012) Resistance determinants of Pseudomonas species from aquaculture in Australia. J Aquacult Res Develop 3:1–6

    Google Scholar 

  • Özdemir S, Kilinc E, Poli A, Nicolaus B, Güven K (2009) Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chemical Eng J 152:195–206

    Article  Google Scholar 

  • Panda G, Das S, Chatterjee S, Maity P, Bandopadhyay T, Guha A (2006) Adsorption of cadmium on husk of Lathyrus sativus: physico-chemical study. Colloids Surf B: Biointerfaces 50:49–54

    Article  CAS  PubMed  Google Scholar 

  • Parikh SJ, Chorover J (2006) ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide. Langmuir 22:8492–8500

    Article  CAS  PubMed  Google Scholar 

  • Pérez-chaca MV, Rodríguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37:1672–1687

    Article  PubMed  Google Scholar 

  • Rahoui S, Ben C, Chaoui A, Martinez Y, Yamchi A, Rickauer M, Gentzbittel L, El Ferjani E (2014) Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes. Environ Sci Pollut Res 21:8070–8083

    Article  CAS  Google Scholar 

  • Rehman A, Anjum MS (2011) Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ Monit Assess 174:585–595

    Article  CAS  PubMed  Google Scholar 

  • Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213

    Article  CAS  PubMed  Google Scholar 

  • Sabdono A (2011) Cadmium removal by a bioreducpiun coral bacterium Pseudoalteromonas sp. strain CD15 isolated from the tissue of coral Goniastrea aspera, jepara waters. J Coastal Develop 13:81–91

    Google Scholar 

  • Saluja B, Sharma V (2014) Cadmium resistance mechanism in acidophilic and alkalophilic bacterial isolates and their application in bioremediation of metal-contaminated soil. Soil and Sediment Contamination: Int J 23:1–17

    Article  CAS  Google Scholar 

  • Schirawski J, Hagens W, Fitzgerald GF, van Sinderen D (2002) Molecular characterization of cadmium resistance in Streptococcus thermophilus strain 4134: an example of lateral gene transfer. Appl Environ Microbiol 68:5508–5516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sekhar K, Priyanka B, Reddy V, Rao K (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan, L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72:131–139

    Article  CAS  Google Scholar 

  • Shamim S, Rehman A (2015) Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress. J Basic Microbiol 55:374–381

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Margolin W (1998) FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180:2050–2056

  • Ueshima M, Ginn BR, Haack EA, Szymanowski JE, Fein JB (2008) Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim Cosmochim Acta 72:5885–5895

    Article  CAS  Google Scholar 

  • Vargas-García MC, López MJ, Suárez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection. Sci Total Environ 431:62–67

    Article  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  PubMed  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Hadi P, Chen G, McKay G (2014) Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J Hazard Mater 273:118–123

    Article  CAS  PubMed  Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Pan C, Bo J, Wang K (2014) Regulation of metallothionein gene expression in response to benzo [a] pyrene exposure and bacterial challenge in marine cultured black porgy (Acanthopagrus schlegelii). Chinese J Geochem 33:404–410

    Article  CAS  Google Scholar 

  • Yazdankhah A, Moradi S, Amirmahmoodi S, Abbasian M, Shoja SE (2010) Enhanced sorption of cadmium ion on highly ordered nanoporous carbon by using different surfactant modification. Microporous Mesoporous Mater 133:45–53

    Article  CAS  Google Scholar 

  • Zeng X, Tang J, Liu X, Jiang P (2012) Response of P. aeruginosa E1 gene expression to cadmium stress. Curr Microbiol 65:799–804

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Tang J, Yin H, Liu X, Jiang P, Liu H (2013) Isolation, identification and cadmium adsorption of a high cadmium-resistant Paecilomyces lilacinus. Afr J Biotechnol 9:6525–6533

    Google Scholar 

  • Zeng X-X, Tang J-X, Liu X-D, Jiang P (2009) Isolation, identification and characterization of cadmium-resistant Pseudomonas aeruginosa strain E 1. J Central South Uni Technol 16:416–421

    Article  CAS  Google Scholar 

  • Zolkiewski M (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation a novel multi-chaperone system from Escherichia coli. J Biol Chem 274:28083–28086

    Article  CAS  PubMed  Google Scholar 

  • Zouboulis A, Loukidou M, Matis K (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grant no. 20-1373/R&D/10 from the Higher Education Commission (HEC), Islamabad, Pakistan which is gratefully acknowledged.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rehman.

Electronic supplementary material

ESM 1

(PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z., Nisar, M.A., Hussain, S.Z. et al. Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol 99, 10745–10757 (2015). https://doi.org/10.1007/s00253-015-6901-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6901-x

Keywords

Navigation