Skip to main content
Log in

Multienzymatic synthesis of nucleic acid derivatives: a general perspective

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Living cells are most perfect synthetic factory. The surprising synthetic efficiency of biological systems is allowed by the combination of multiple processes catalyzed by enzymes working sequentially. In this sense, biocatalysis tries to reproduce nature’s synthetic strategies to perform the synthesis of different organic compounds using natural catalysts such as cells or enzymes. Nowadays, the use of multienzymatic systems in biocatalysis is becoming a habitual strategy for the synthesis of organic compounds that leads to the realization of complex synthetic schemes. By combining several steps in one pot, a significant step economy can be realized and the potential for environmentally benign synthesis is improved. Using this sustainable synthetic system, several work-up steps can be avoided and pure products are ideally isolated after a series of reactions in one single vessel after just one straightforward purification step. In recent years, enzymatic methodology for the preparation of nucleic acid derivatives (NADs) has become a standard technique for the synthesis of a wide variety of natural NADs. Enzymatic methods have been shown to be an efficient alternative for the synthesis of nucleoside and nucleotide analogs to the traditional multistep chemical methods, since chemical glycosylation reactions include several protection–deprotection steps and the use of chemical reagents and organic solvents that are expensive and environmentally harmful. In this minireview, we want to illustrate what we consider the most current relevant examples of in vivo and in vitro multienzymatic systems used for the synthesis of nucleic acid derivatives showing advantages and disadvantages of each methodology. Finally, a detailed perspective about the impact of -omics in multienzymatic systems has been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barai V, Zinchenko A, Eroshevskaya L, Zhernosek E, De Clercq E, Mikhailopulo I (2002) Chemo-enzymatic synthesis of 3-deoxy-β-d-ribofuranosyl purines. Helv Chim Acta 85:1893–1900

    Article  CAS  Google Scholar 

  • Barai VN, Zinchenko AI, Eroshevskaya LA, Zhernosek EV, Balzarini J, De Clercq E, Mikhailopulo IA (2003) Chemo-enzymatic synthesis of 3-deoxy-β-d-ribofuranosyl purines and study of their biological properties. Nucleos Nucleot Nucl 22:751–753

    Article  CAS  Google Scholar 

  • Birmingham WR, Starbird CA, Panosian TD, Nannemann DP, Iverson T, Bachmann BO (2014) Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol 10:392–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bochkov D, Khomov V, Tolstikova T (2006) Hydrolytic approach for production of deoxyribonucleoside-and ribonucleoside-5′-monophosphates and enzymatic synthesis of their polyphosphates. Biochemistry 71:79–83

    CAS  PubMed  Google Scholar 

  • Boryski J (2008) Reactions of transglycosylation in the nucleoside chemistry. Curr Org Chem 12:309–325

    Article  CAS  Google Scholar 

  • Chi X, Pahari P, Nonaka K, Van Lanen SG (2011) Biosynthetic origin and mechanism of formation of the aminoribosyl moiety of peptidyl nucleoside antibiotics. J Am Chem Soc 133:14452–14459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cobb SL, Deng H, McEwan AR, Naismith JH, O’Hagan D, Robinson DA (2006) Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2′-deoxyadenosine substrates. Org Biomol Chem 4:1458–1460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Condezo LA, Fernandez-Lucas J, Garcia-Burgos CA, Alcantara AR, Sinisterra JV (2006) Enzymatic synthesis of modified nucleosides. CRC Press, Boca Raton

    Google Scholar 

  • Da Costa CP, Fedor MJ, Scott LG (2007) 8-Azaguanine reporter of purine ionization states in structured RNAs. J Am Chem Soc 129:3426–3432

    Article  PubMed  Google Scholar 

  • De Benedetti EC, Rivero CW, Britos CN, Lozano ME, Trelles JA (2012) Biotransformation of 2,6‐diaminopurine nucleosides by immobilized Geobacillus stearothermophilus. Biotechnol Progr 28:1251–1256

    Article  Google Scholar 

  • De Clercq E (2005a) Antiviral drug discovery and development: where chemistry meets with biomedicine. Antivir Res 67:56–75

    Article  PubMed  Google Scholar 

  • De Clercq E (2005b) Recent highlights in the development of new antiviral drugs. Curr Opin Microbiol 8:552–560

    Article  PubMed  Google Scholar 

  • Deng H, Cobb SL, Gee AD, Lockhart A, Martarello L, McGlinchey RP, O’Hagan D, Onega M (2006) Fluorinase mediated C–18F bond formation, an enzymatic tool for PET labelling. Chem Comm 6:652–654

    Article  PubMed  Google Scholar 

  • Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, Yu Y, Shepherd T, Naismith JH, O’Hagan D (2014) Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902‐109 by Genome Mining. ChemBioChem 15:364–368

    Article  CAS  PubMed  Google Scholar 

  • Eustáquio AS, Pojer F, Noel JP, Moore BS (2007) Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat Chem Biol 4:69–74

    Article  PubMed Central  PubMed  Google Scholar 

  • Fang H, Xie X, Xu Q, Zhang C, Chen N (2013) Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15. Biotechnol Lett 35:245–251

    Article  CAS  PubMed  Google Scholar 

  • Fresco-Taboada A, de la Mata I, Arroyo M, Fernández-Lucas J (2013) New insights on nucleoside 2′-deoxyribosyltransferases: a versatile biocatalyst for one-pot one-step synthesis of nucleoside analogs. Appl Microbiol Biotechnol 97:3773–3785

    Article  CAS  PubMed  Google Scholar 

  • Fujio T, Nishi T, Ito S, Maruyama A (1997) High level expression of XMP aminase in Escherichia coli and its application for the industrial production of 5′-guanylic acid. Biosci Biotechnol Biochem 61:840–845

    Article  CAS  PubMed  Google Scholar 

  • Galmarini CM, Mackey JR, Dumontet C (2002) Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 3:415–424

    Article  CAS  PubMed  Google Scholar 

  • García-Junceda E (2008) Multi-step enzyme catalysis. Wiley Online Library

  • Ge C, OuYang L, Ding Q, Ou L (2009) Co-expression of recombinant nucleoside phosphorylase from Escherichia coli and its application. Appl Biochem Biotechnol 159:168–177

    Article  CAS  PubMed  Google Scholar 

  • Gordon GE, Visser DF, Brady D, Raseroka N, Bode ML (2011) Defining a process operating window for the synthesis of 5-methyluridine by transglycosylation of guanosine and thymine. J Biotechnol 151:108–113

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Ueda S (1981) A study on the mechanism of DNA excretion from P. aeruginosa KYU-1. Effect of mitomycin C on extracellular DNA production. Agric Biol Chem 45:2457–2461

    Article  CAS  Google Scholar 

  • Hennig M, Scott LG, Sperling E, Bermel W, Williamson JR (2007) Synthesis of 5-fluoropyrimidine nucleotides as sensitive NMR probes of RNA structure. J Am Chem Soc 129:14911–14921

    Article  CAS  PubMed  Google Scholar 

  • Honda K, Maya S, Omasa T, Hirota R, Kuroda A, Ohtake H (2010) Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes. J Biotechnol 148:204–207

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi N, Ogawa J, Kawano T, Sakai T, Saito K, Matsumoto S, Sasaki M, Mikami Y, Shimizu S (2006a) Biochemical retrosynthesis of 2′-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase. Appl Microbiol Biotechnol 71:615–621

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi N, Ogawa J, Kawano T, Sakai T, Saito K, Matsumoto S, Sasaki M, Mikami Y, Shimizu S (2006b) Efficient production of 2-deoxyribose 5-phosphate from glucose and acetaldehyde by coupling of the alcoholic fermentation system of Baker’s yeast and deoxyriboaldolase-expressing Escherichia coli. Biosci Biotechnol Biochem 70:1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi N, Ogawa J, Kawano T, Sakai T, Saito K, Matsumoto S, Sasaki M, Mikami Y, Shimizu S (2006c) One-pot microbial synthesis of 2′-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase. Biotechnol Lett 28:877–881

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi N, Kawano T, Sakai T, Matsumoto S, Sasaki M, Mikami Y, Ogawa J, Shimizu S (2009) Screening and characterization of a phosphopentomutase useful for enzymatic production of 2′-deoxyribonucleoside. N Biotechnol 26:75–82

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi N, Sakai T, Kawano T, Matsumoto S, Sasaki M, Hibi M, Shima J, Shimizu S, Ogawa J (2012) Construction of microbial platform for an energy-requiring bioprocess: practical 2′-deoxyribonucleoside production involving a C−C coupling reaction with high energy substrates. Microb Cell Fact 11:82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iglesias LE, Lewkowicz ES, Medici R, Bianchi P, Iribarren AM (2015) Biocatalytic approaches applied to the synthesis of nucleoside prodrugs. Biotechnol Adv. doi:10.1016/j.biotechadv.2015.03.009

    PubMed  Google Scholar 

  • Ishige T, Honda K, Shimizu S (2005) Whole organism biocatalysis. Curr Opin Chem Biol 9:174–180

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim B (2006) Recombinant Escherichia coli-catalyzed production of cytidine 5′-triphosphate from cytidine 5′-monophosphate. J Ind Eng Chem 12:757

    CAS  Google Scholar 

  • Lewkowicz E, Iribarren A (2006) Nucleoside phosphorylases. Curr Org Chem 10:1197–1215

  • Li Y, Ding Q, Ou L, Qian Y, Zhang J (2015) One-pot process of 2′-deoxyguanylic acid catalyzed by a multi-enzyme system. Biotechnol Bioprocess Eng 20:37–43

  • Liang S, Li W, Gao T, Zhu X, Yang G, Ren D (2010) Enzymatic synthesis of 2′-deoxyadenosine and 6-methylpurine-2′-deoxyriboside by Escherichia coli DH5α overexpressing nucleoside phosphorylases from Escherichia coli BL21. J Biosci Bioeng 110:165–168

    Article  CAS  PubMed  Google Scholar 

  • López-Gallego F, Schmidt-Dannert C (2010) Multi-enzymatic synthesis. Curr Opin Chem Biol 14:174–183

    Article  PubMed  Google Scholar 

  • Médici R, Lewkowicz E, Iribarren A (2006) Microbial synthesis of 2, 6-diaminopurine nucleosides. J Mol Catal B Enzym 39:40–44

    Article  Google Scholar 

  • Médici R, Porro MT, Lewkowicz E, Montserrat J, Iribarren AM (2008) Coupled biocatalysts applied to the synthesis of nucleosides. Nucleic Acids Symp Ser 52:541–542

    Article  Google Scholar 

  • Médici R, Lewkowicz ES, Iribarren AM (2009) Synthesis of 9-beta-d-arabinofuranosylguanine by combined use of two whole cell biocatalysts. Bioorg Med Chem Lett 19:4210–4212

    Article  PubMed  Google Scholar 

  • Mikhailopulo IA (2007) Biotechnology of nucleic acid constituents—state of the art and perspectives. Curr Org Chem 11:317–335

    Article  CAS  Google Scholar 

  • Mikhailopulo IA, Miroshnikov AI (2011) Biologically important nucleosides: modern trends in biotechnology and application. Mendeleev Commun 21:57–68

    Article  CAS  Google Scholar 

  • Mori H, Iida A, Fujio T, Teshiba S (1997) A novel process of inosine 5′-monophosphate production using overexpressed guanosine/inosine kinase. Appl Microbiol Biotechnol 48:693–698

    Article  CAS  PubMed  Google Scholar 

  • Niu G, Tan H (2014) Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 23:110–119

    Article  PubMed  Google Scholar 

  • Nóbile M, Médici R, Terreni M, Lewkowicz ES, Iribarren AM (2012) Use of Citrobacter koseri whole cells for the production of arabinonucleosides: a larger scale approach. Process Biochem 47:2182–2188

    Article  Google Scholar 

  • O’Hagan D, Schaffrath C, Cobb SL, Hamilton JT, Murphy CD (2002) Biochemistry: biosynthesis of an organofluorine molecule. Nature 416:279

    Article  PubMed  Google Scholar 

  • O’Hagan D, Deng H (2014) Enzymatic fluorination and biotechnological developments of the fluorinase. Chem Rev 115:634–649

    Article  PubMed  Google Scholar 

  • Ogawa J, Saito K, Sakai T, Horinouchi N, Kawano T, Matsumoto S, Sasaki M, Mikami Y, Shimizu S (2003) Microbial production of 2-deoxyribose 5-phosphate from acetaldehyde and triosephosphate for the synthesis of 2′-deoxyribonucleosides. Biosci Biotechnol Biochem 67:933–936

    Article  CAS  PubMed  Google Scholar 

  • Onega M, Domarkas J, Deng H, Schweiger LF, Smith TA, Welch AE, Plisson C, Gee AD, O’Hagan D (2010) An enzymatic route to 5-deoxy-5-[18F] fluoro-d-ribose, a [18F]-fluorinated sugar for PET imaging. Chem Commun 46:139–141

    Article  CAS  Google Scholar 

  • Oroz-Guinea I, García-Junceda E (2013) Enzyme catalysed tandem reactions. Curr Opin Chem Biol 17:236–249

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Nair V (1997) Enzymatic synthesis of thymidine using bacterial whole cells and isolated purine nucleoside phosphorylase. Biocatal Biotransformation 15:147–158

    Article  CAS  Google Scholar 

  • Parker WB (2009) Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 109:2880–2893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasad AK, Trikha S, Parmar VS (1999) Nucleoside synthesis mediated by glycosyl transferring enzymes. Bioorg Chem 27:135–154

    Article  CAS  Google Scholar 

  • Qian Y, Ding Q, Li Y, Zou Z, Yan B, Ou L (2014) Phosphorylation of uridine and cytidine by uridine–cytidine kinase. J Biotechnol 188:81–87

    Article  CAS  Google Scholar 

  • Ricca E, Brucher B, Schrittwieser JH (2011) Multi‐enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353:2239–2262

    Article  CAS  Google Scholar 

  • Rivero CW, De Benedetti EC, Sambeth JE, Lozano ME, Trelles JA (2012) Biosynthesis of anti-HCV compounds using thermophilic microorganisms. Bioorg Med Chem Lett 22:6059–6062

    Article  CAS  PubMed  Google Scholar 

  • Robak T, Lech-Maranda E, Korycka A, Robak E (2006) Purine nucleoside analogs as immunosuppressive and antineoplastic agents: mechanism of action and clinical activity. Curr Med Chem 13:3165–3189

    Article  CAS  PubMed  Google Scholar 

  • Rocchietti S, Ubiali D, Terreni M, Albertini AM, Fernández-Lafuente R, Guisán JM, Pregnolato M (2004) Immobilization and stabilization of recombinant multimeric uridine and purine nucleoside phosphorylases from Bacillus subtilis. Biomacromolecules 5:2195–2200

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moreno I, Oroz-Guinea I, Iturrate L, García-Junceda E (2012) ChemInform Abstract: Multienzyme Reactions (Weinheim: Wiley-VCH) 44 (29)

  • Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2008) Pathway engineered enzymatic de novo purine nucleotide synthesis. ACS Chem Biol 3:499–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2010) Enzymatic de novo pyrimidine nucleotide synthesis. J Am Chem Soc 133:297–304

    Article  PubMed Central  PubMed  Google Scholar 

  • Scism RA, Stec DF, Bachmann BO (2007) Synthesis of nucleotide analogues by a promiscuous phosphoribosyltransferase. Org Lett 9:4179–4182

    Article  CAS  PubMed  Google Scholar 

  • Scism RA, Bachmann BO (2010) Five‐component cascade synthesis of nucleotide analogues in an engineered self‐immobilized enzyme aggregate. ChemBioChem 11:67–70

    Article  CAS  PubMed  Google Scholar 

  • Scott LG, Geierstanger BH, Williamson JR, Hennig M (2004) Enzymatic synthesis and 19F NMR studies of 2-fluoroadenine-substituted RNA. J Am Chem Soc 126:11776–11777

    Article  CAS  PubMed  Google Scholar 

  • Serra I, Ubiali D, Piškur J, Christoffersen S, Lewkowicz ES, Iribarren AM, Albertini AM, Terreni M (2013) Developing a collection of immobilized nucleoside phosphorylases for the preparation of nucleoside analogues: enzymatic synthesis of arabinosyladenine and 2′, 3′‐dideoxyinosine. Chem Plus Chem 78:157–165

    CAS  Google Scholar 

  • Spoldi E, Ghisotti D, Cali S, Grisa M, Orsini G, Tonon G, Zuffi G (2001) Recombinant bacterial cells as efficient biocatalysts for the production of nucleosides. Nucleos Nucleot Nucl 20:977–979

    Article  CAS  Google Scholar 

  • Tomita F, Suzuki T (1972) Extracellular accumulation of DNA by hydrocarbonutilizing bacteria. Agric Biol Chem 36:133–140

    Article  CAS  Google Scholar 

  • Trelles J, Fernandez M, Lewkowicz E, Iribarren A, Sinisterra J (2003) Purine nucleoside synthesis from uridine using immobilised Enterobacter gergoviae CECT 875 whole cells. Tetrahedron Lett 44:2605–2609

    Article  CAS  Google Scholar 

  • Ubiali D, Rocchietti S, Scaramozzino F, Terreni M, Albertini AM, Fernández‐Lafuente R, Guisán JM, Pregnolato M (2004) Synthesis of 2′‐deoxynucleosides by transglycosylation with new immobilized and stabilized uridine phosphorylase and purine nucleoside phosphorylase. Adv Synth Catal 346:1361–1366

    Article  CAS  Google Scholar 

  • Utagawa T (1999) Enzymatic preparation of nucleoside antibiotics. J Mol Catal B Enzym 6:215–222

    Article  CAS  Google Scholar 

  • Valino AL, Iribarren AM, Lewkowicz E (2015) New biocatalysts for one pot multistep enzymatic synthesis of pyrimidine nucleoside diphosphates from readily available reagents. J Mol Catal B Enzym 114:58–64

  • Visser DF, Rashamuse KJ, Hennessy F, Gordon GE, Van Zyl PJ, Mathiba K, Bode ML, Brady D (2010) High-yielding cascade enzymatic synthesis of 5-methyluridine using a novel combination of nucleoside phosphorylases. Biocatal Biotransform 28:245–253

    Article  CAS  Google Scholar 

  • Visser DF, Hennessy F, Rashamuse J, Pletschke B, Brady D (2011) Stabilization of Escherichia coli uridine phosphorylase by evolution and immobilization. J Mol Catal B Enzym 68:279–285

    Article  CAS  Google Scholar 

  • Wu W, Bergstrom DE, Davisson VJ (2003) A combination chemical and enzymatic approach for the preparation of azole carboxamide nucleoside triphosphate. J Org Chem 68:3860–3865

    Article  CAS  PubMed  Google Scholar 

  • Yokozeki K, Tsuji T (2000) A novel enzymatic method for the production of purine-2′-deoxyribonucleosides. J Mol Catal B 10:207–213

    Article  CAS  Google Scholar 

  • Zhou X, Szeker K, Janocha B, Böhme T, Albrecht D, Mikhailopulo IA, Neubauer P (2013) Recombinant purine nucleoside phosphorylases from thermophiles: preparation, properties and activity towards purine and pyrimidine nucleosides. FEBS J 280:1475–1490

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Szeker K, Jiao L, Oestreich M, Mikhailopulo IA, Neubauer P (2015a) Synthesis of 2,6‐dihalogenated purine nucleosides by thermostable nucleoside phosphorylases. Adv Synt Catal 357:1237–1244

    Article  CAS  Google Scholar 

  • Zhou X, Mikhailopulo IA, Bournazou MNC, Neubauer P (2015b) Immobilization of thermostable nucleoside phosphorylases on MagReSyn® epoxide microspheres and their application for the synthesis of 2,6-dihalogenated purine nucleosides. J Mol Catal B Enzym 115:119–127

    Article  CAS  Google Scholar 

  • Zhu S, Ren L, Wang J, Zheng G, Tang P (2012) Two-step efficient synthesis of 5-methyluridine via two thermostable nucleoside phosphorylase from Aeropyrum pernix. Bioorg Med Chem Lett 22:2102–2104

    Article  CAS  PubMed  Google Scholar 

  • Zinchenko A, Barai V, Bokut S, Kvasyuk E, Mikhailopulo I (1990) Synthesis of 9-(β-d-arabinofuranosyl) guanine using whole cells of Escherichia coli. Appl Microbiol Biotechnol 32:658–661

    Article  CAS  PubMed  Google Scholar 

  • Zuffi G, Ghisotti D, Oliva I, Capra E, Frascotti G, Tonon G, Orsini G (2004) Immobilized biocatalysts for the production of nucleosides and nucleoside analogues by enzymatic transglycosylation reactions. Biocatal Biotransformation 22:25–33

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank all my colleagues in the Applied Biotechnology Group (European University of Madrid, Spain) and the Department of Pharmacy and Biotechnology (European University of Madrid, Spain), and finally, I specially thank Dr. García-Junceda for all the good advices. I gratefully recognize funding from European University of Madrid (Project References: 2014 UEM 13 and 2015 UEM 32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Fernández-Lucas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Lucas, J. Multienzymatic synthesis of nucleic acid derivatives: a general perspective. Appl Microbiol Biotechnol 99, 4615–4627 (2015). https://doi.org/10.1007/s00253-015-6642-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6642-x

Keywords

Navigation