Skip to main content

Advertisement

Log in

Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdeen S, Geo S, Sukanya Praseetha PK, Dhanya RP (2014) Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens 5:155–162

    Google Scholar 

  • Ahmed V, Kumar J, Kumar M, Chauhan MB, Vij M, Ganguli M, Chauhan NS (2013) Synthesis, characterization of penicillin G capped silver nanoconjugates to combat β-lactamase resistance in infectious microorganism. J Biotechnol 163:419–424

    CAS  PubMed  Google Scholar 

  • Ali DM, Sasikala M, Gunasekaran M, Thajuddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6:385–390

    Google Scholar 

  • Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M (2011) Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther 9:1035–1052

    CAS  PubMed  Google Scholar 

  • Annear DI, Mee BJ, Bailey M (1976) Instability and linkage of silver resistance, lactose fermentation and colony structure in Enterobacter cloacae from burn wounds. J Clin Pathol 29:441–443

    PubMed Central  CAS  PubMed  Google Scholar 

  • Azim HA, de Azambuja E, Colozza M, Bines J, Piccart MJ (2011) Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann Oncol 22:1939–1947

    PubMed  Google Scholar 

  • Bai H-J, Yang B-S, Chai C-J, Yang G-E, Jia W-L, Yi Z-B (2011) Green synthesis of silver nanoparticles using Rhodobacter sphaeroides. World J Microbiol Biotechnol 27:2723–2728

    CAS  Google Scholar 

  • Banu AN, Balasubramanian C, Moorthi PV (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:311–316

    PubMed  Google Scholar 

  • Boopathi S, Gopinath S, Boopathi T, Balamurugan V, Rajeshkumar R, Sundararaman M (2012) Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated Pseudomonas aeruginosa M6 using two different thermal treatments. Ind Eng Chem Res 51:5976–5985

    CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germ-line stem cells. Toxicol Sci 88:412–419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brayner R, Barberousse H, Hemadi M, Djediat S, Yepremian C, Coradin T, Livage J, Fievet F, Coute A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708

    CAS  PubMed  Google Scholar 

  • Chun-Jing C, Hong-Juan B (2010) Biosynthesis of silver nanoparticles using the phototrophic bacteria Rhodopseudomonas palustris and its antimicrobial activity against Escherichia coli and Staphylococcus aureus. Microbiol China 37:1798–1804

    Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications and perspectives. Adv Colloid Interface Sci 166:119–135

    CAS  PubMed  Google Scholar 

  • Das SK, Marsili E (2010) A green chemical approach for the synthesis of gold nanoparticles: characterization and mechanistic aspect. Rev Environ Sci Biotechnol 9:199–204

    CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    CAS  PubMed  Google Scholar 

  • Debabov VG, Voeikova TA, Shebanova AS, Shaitan KV, Emel’yanova LK, Novikova LM, Kirpichnikov MP (2013) Bacterial synthesis of silver sulfide nanoparticles. Nanotechnol Russ 8:269–276

    Google Scholar 

  • Deepa S, Kanimozhi K, Panneerselvam A (2013) Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. Int J Curr Microbiol Appl Sci 2:223–230

    Google Scholar 

  • Deepak V, Umamaheshwaran PS, Guhan K, Nanthini RA, Krithiga B, Jaithoon NMH, Gurunathan S (2011) Synthesis of gold and silver nanoparticles using purified URAK. Colloids Surf B Biointerfaces 86:353–358

    CAS  PubMed  Google Scholar 

  • Deshpande LM, Chopade BA (1994) Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals 7:49–56

    CAS  PubMed  Google Scholar 

  • Deshpande LM, Kapadnis BP, Chopade BA (1993) Metal resistance in Acinetobacter and its relation to beta-lactamase production. Biometals 6:55–59

    CAS  PubMed  Google Scholar 

  • Dhakephalkar PK, Chopade BA (1994) High levels of multiple metal resistance and its correlation to antibiotic resistance in environmental isolates of Acinetobacter. Biometals 7:67–74

    CAS  PubMed  Google Scholar 

  • Dhoondia ZH, Chakraborty H (2012) Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater Nanotechnol 2(2):1. doi:10.5772/55741

    Google Scholar 

  • Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A (2009) Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci 339:521–526

    CAS  PubMed  Google Scholar 

  • Duhamel BG (1912) Electric metallic colloids and their therapeutic applications. Lancet 1:89–90

    Google Scholar 

  • Duraisamy K, Yang SL (2013) Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb Technol 52:151–156

    Google Scholar 

  • Duran N, Marcato PD, Duran M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624

    CAS  PubMed  Google Scholar 

  • Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152

    CAS  PubMed  Google Scholar 

  • El-Naggar NEA, Abdelwahed NAM (2014) Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes. J Microbiol 52:53–63

    CAS  Google Scholar 

  • El-Shanshoury AER, ElSilk SE, Ebeid ME (2011) Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnol. doi:10.5402/2011/385480

    Google Scholar 

  • Fayaz AM, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT (2011) Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem 46:1958–1962

    Google Scholar 

  • Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gaidhani S, Singh R, Singh D, Patel U, Shevade K, Yeshvekar R, Chopade BA (2013) Biofilm disruption activity of silver nanoparticles synthesized by Acinetobacter calcoaceticus PUCM 1005. Mater Lett 108:324–327

    CAS  Google Scholar 

  • Gaidhani SV, Raskar AV, Poddar S, Gosavi S, Sahu PK, Pardesi KR, Bhide SV, Chopade BA (2014) Time dependent enhanced resistance against antibiotics and metal salts by planktonic and biofilm form of Acinetobacter haemolyticus MMC8 clinical isolate. Indian J Med Res 140:665–671

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghorbani HR (2013) Biosynthesis of silver nanoparticles using Salmonella typhirium. J Nanostruct Chem 3:29–32

    Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gopinathan P, Ashok AM, Selvakumar R (2013) Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial. Appl Surf Sci 276:717–722

    CAS  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    CAS  Google Scholar 

  • Graf P, Mantion A, Foelske A, Shkilnyy A, Masic A, Thünemann AF, Taubert A (2009) Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chem Eur J 15:5831–5844

    CAS  PubMed  Google Scholar 

  • Graves JL, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42

    PubMed Central  PubMed  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Deepak V, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335

    CAS  PubMed  Google Scholar 

  • Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim J-H (2013) Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int. doi:10.1155/2013/535796

    PubMed Central  PubMed  Google Scholar 

  • He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786

    CAS  Google Scholar 

  • Hosseini-Abari A, Emtiazi G, Ghasemi SM (2013) Development of an eco-friendly approach for biogenesis of silver nanoparticles using spores of Bacillus athrophaeus. World J Microbiol Biotechnol 29:2359–2364

    CAS  PubMed  Google Scholar 

  • Jha AK, Prasad K (2010) Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291

    CAS  PubMed  Google Scholar 

  • Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65:1014–1017

    CAS  Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153

    CAS  PubMed  Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262

    CAS  PubMed  Google Scholar 

  • Kanmani P, Lim ST (2013) Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem 48:1099–1106

    CAS  Google Scholar 

  • Kannan N, Mukunthan KS, Balaji S (2011) A comparative study of morphology, reactivity and stability of synthesized silver nanoparticles using Bacillus subtilis and Catharanthus roseus (L.) G. Don. Colloids Surf B Biointerfaces 86:378–383

    CAS  PubMed  Google Scholar 

  • Karthik C, Radha KV (2012) Biosynthesis and characterization of silver nanoparticles using Enterobacter aerogenes: a kinetic approach. Dig J Nanomater Biostruct 7:1007–1014

    Google Scholar 

  • Karthik L, Kumar G, Kirthi AV, Rahuman AA, Rao KVB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267

    CAS  PubMed  Google Scholar 

  • Khan Z, Singh T, Hussain JI, Obaid AY, Al-Thabaiti SA, El-Mossalamy EH (2013) Starch-directed green synthesis, characterization and morphology of silver nanoparticles. Colloids Surf B Biointerfaces 102:578–584

    CAS  PubMed  Google Scholar 

  • Kiran GS, Sabu A, Selvin J (2010) Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol 148:221–225

    CAS  PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kraynov A, Müller TE (2011) Concepts for the stabilization of metal nanoparticles in ionic liquids. In: Handy S (ed) Applications of ionic liquids in science and technology. InTech, Croatia, pp 235–260

    Google Scholar 

  • Krishna Rao KSV, Reddy PR, Lee Y-I, Kim C (2012) Synthesis and characterization of chitosan-PEG-Ag nanocomposites for antimicrobial application. Carbohydr Polym 87:920–925

    CAS  Google Scholar 

  • Krishnaraj RN, Berchmans S (2013) In vitro antiplatelet activity of silver nanoparticles synthesized using the microorganism Gluconobacter roseus: an AFM-based study. RSC Adv 3:8953–8959

    CAS  Google Scholar 

  • Kumar CG, Mamidyala SK (2011) Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 84:462–466

    CAS  PubMed  Google Scholar 

  • Kumar A, Kumar-Vemula P, Ajayan PM, John G (2008) Silver-nanoparticle embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    CAS  PubMed  Google Scholar 

  • Kumar CG, Mamidyala SK, Das B, Sridhar B, Devi GS, Karuna MS (2010) Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R. J Microbiol Biotechnol 20:1061–1068

    CAS  PubMed  Google Scholar 

  • Kumar SP, Balachandran C, Duraipandiyan V, Ramasamy D, Ignacimuthu S, Al-Dhabi NA (2015) Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Appl Nanosci 5:169–180

  • Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) The formation of nano-scale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 4:7090–7093

    Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23:2694–2699

    CAS  PubMed  Google Scholar 

  • Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    CAS  PubMed  Google Scholar 

  • Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141

    CAS  PubMed  Google Scholar 

  • Li L, Sun J, Li X, Zhang Y, Wang Z, Wang C, Wang Q (2012) Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials 33:1714–1721

    CAS  PubMed  Google Scholar 

  • Lin J, Chen R, Feng S, Pan J, Li Y, Chen G, Cheng M, Huang Z, Yu Y, Zeng H (2011) A novel blood plasma analysis technique combining membrane electrophoresis with silver nanoparticle-based SERS spectroscopy for potential applications in noninvasive cancer detection. Nanomedicine 7:655–663

    CAS  PubMed  Google Scholar 

  • Liu C, Yang D, Wang Y, Shi J, Jiang Z (2012) Fabrication of antimicrobial bacterial cellulose–Ag/AgCl nanocomposite using bacteria as versatile biofactory. J Nanopart Res 14:1084–1095

    Google Scholar 

  • Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica 19:926–929

    CAS  Google Scholar 

  • Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6:2656–2664

    CAS  PubMed  Google Scholar 

  • Manikprabhu D, Lingappa K (2013) Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method. J Pharm Res 6:255–260

    CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S-K (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed Res Int. doi:10.1155/2013/287638

    Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    CAS  Google Scholar 

  • Morsy FM, Nafady NA, Abd-Alla MH, Elhady DA (2014) Green synthesis of silver nanoparticles by water soluble fraction of the extracellular polysaccharides/matrix of the cyanobacterium Nostoc commune and its application as a potent fungal surface sterilizing agent of seed crops. Univers J Microbiol Res 2:36–43

    CAS  Google Scholar 

  • Mouxing F, Qingbiao L, Daohua S, Yinghua L, Ning H, Xu D, Huixuan W, Jiale H (2006) Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng 14:114–117

    Google Scholar 

  • Muthukkumarasamy S, Sharadha A, Vignesh S, Dhanabalan K, Gurunathan K (2012) Extracellular synthesis of polygonal silver nanoparticles using extract of Escherichia coli ATCC 25922 and its antibacterial activities. Dig J Nanomater Biostruct 7:1419–1426

    Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    CAS  PubMed  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescense of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crys Growth Des 2:293–298

    CAS  Google Scholar 

  • Nam KT, Lee YL, Krauland EM, Kottmann ST, Belcher AM (2008) Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano 2:1480–1486

    CAS  PubMed  Google Scholar 

  • Namasivayam SKR, Prakash P, Kumar G (2011) Anti tumor activity of biologically synthesized silver nanoparticles produced by Lactobacillus acidophilus against HEP 2. J Pharm Res 4:1651–1653

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2013) Biosynthesis of silver nanoparticles by phytopathogen Xanthomonas oryzae pv. oryzae strain BXO8. J Microbiol Biotechnol 23:1287–1292

    CAS  PubMed  Google Scholar 

  • Otaqsara SMT (2011) Biosynthesis of quasi-spherical Ag nanoparticle by Pseudomonas aeruginosa as a bioreducing agent. Eur Phys J Appl Phys 56:30402

    Google Scholar 

  • Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH (2014) Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ Sci Pollut Res 21:1503–1513

    CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A (2013) Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8, e59140

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem 9:1415–1422

    CAS  PubMed  Google Scholar 

  • Parikh RY, Ramanathan R, Coloe PJ, Bhargava SK, Patole MS, Shouche YS, Bansal V (2011) Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One 6, e21401

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paulkumar K, Rajeshkumar S, Gnanajobitha G, Vanaja M, Malarkodi C, Annadurai G (2013) Biosynthesis of silver chloride nanoparticles using Bacillus subtilis MTCC 3053 and assessment of its antifungal activity. ISRN Nanomater. doi:10.1155/2013/317963

    Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19:245705–245710

    PubMed  Google Scholar 

  • Pourali P, Baserisalehi M, Afsharnezhad S, Behravan J, Alavi H, Hosseini A (2012) Biological synthesis of silver and gold nanoparticles by bacteria in different temperatures (37 °C and 50 °C). J Pure Appl Microbiol 6:757–763

    CAS  Google Scholar 

  • Pourali P, Baserisalehi M, Afsharnezhad S, Behravan J, Ganjali R, Bahador N, Arabzadeh S (2013) The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. Biometals 26:189–196

    CAS  PubMed  Google Scholar 

  • Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2011) Synthesis of AgNPs by Bacillus cereus bacteria and their antimicrobial potential. J Biomater Nanobiotechnol 2:155–161

    Google Scholar 

  • Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation? Indian J Phys 84:1355–1360

    CAS  Google Scholar 

  • Priyadarshini S, Gopinath V, Priyadharsshini NM, MubarakAli D, Velusamy P (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surf B Biointerfaces 102:232–237

    CAS  PubMed  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815

    CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2013) Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Nanosci Nanotechnol 3:21–25

    Google Scholar 

  • Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27:714–719

    CAS  PubMed  Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces 81:358–362

    CAS  PubMed  Google Scholar 

  • Sahu PK, Iyer PS, Barage SH, Sonawane KD, Chopade BA (2014) Characterization of the algC gene expression pattern in the multidrug resistant Acinetobacter baumannii AIIMS 7 and correlation with biofilm development on abiotic surface. Sci World J. doi:10.1155/2014/593546

    Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6:61–70

    CAS  Google Scholar 

  • Saklani V, Suman JVK (2012) Microbial synthesis of silver nanoparticles: a review. J Biotechnol Biomater. doi:10.4172/2155-952X.S13-007

    Google Scholar 

  • Salunkhe GR, Ghosh S, Santoshkumar RJ, Khade S, Vashisth P, Kale T, Chopade S, Pruthi V, Kundu G, Bellare JR, Chopade BA (2014) Rapid efficient synthesis and characterization of silver, gold and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 9:2635–2653

    Google Scholar 

  • Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA (2009) Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 5:247–253

    CAS  PubMed  Google Scholar 

  • Sathiyanarayanan G, Kiran GS, Selvin J (2013) Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B Biointerfaces 102:13–20

    CAS  PubMed  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifier and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    CAS  PubMed  Google Scholar 

  • Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    CAS  Google Scholar 

  • Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M (2004) Synthesis of aqueous Au core–Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air–water interface. Langmuir 20:7825–7836

    CAS  PubMed  Google Scholar 

  • Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. p R58–8. Bull Mater Sci 35:1201–1205

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171

    CAS  PubMed  Google Scholar 

  • Shakibai MR, Dhakephalkar PK, Kapdnis BP, Chopade BA (2003) Silver resistance in Acinetobacter baumannii BL54 occurs through binding to a Ag-binding protein. Iranian J Biotechnol 1:41–46

    Google Scholar 

  • Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Pazhanimurugan R, Balagurunathan R (2013) A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf B Biointerfaces 111:680–687

    CAS  PubMed  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interface Sci 209:40–48

    CAS  PubMed  Google Scholar 

  • Si S, Mandal TK (2007) Trytophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. Chem Eur J 13:3160–3168

    CAS  PubMed  Google Scholar 

  • Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8:4277–4290

    PubMed Central  PubMed  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    CAS  PubMed  Google Scholar 

  • Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109:2422–2436

    CAS  PubMed  Google Scholar 

  • Slawson RM, Trevors JT, Lee H (1992) Silver accumulation and resistance in Pseudomonas stutzeri. Arch Microbiol 158:398–404

    CAS  Google Scholar 

  • Sneha K, Yun Y-S (2013) Recovery of microbially synthesized gold nanoparticles using sodium citrate and detergents. Chem Eng J 214:253–261

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    CAS  PubMed  Google Scholar 

  • Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc Lond A 368:1333–1383

    CAS  Google Scholar 

  • Sriram MI, Kalishwaralal K, Gurunathan S (2012) Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis. In: Soloviev M (ed) Nanoparticles in biology and medicine: methods and protocols. Springer, Dordrecht, pp 33–43

    Google Scholar 

  • Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res 14:831–840

    Google Scholar 

  • Srivastava P, Bragança J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831

    CAS  PubMed  Google Scholar 

  • Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 52:393–399

    Google Scholar 

  • Tamboli DP, Lee DS (2013) Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J Hazard Mater 260:878–884

    CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    CAS  PubMed  Google Scholar 

  • Thomas R, Jasim B, Mathew J, Radhakrishnan EK (2012) Extracellular synthesis of silver nanoparticles by endophytic Bordetella sp. isolated from Piper nigrum and its antibacterial activity analysis. Nano Biomed Eng 4:183–187

    CAS  Google Scholar 

  • Veluchamy P, Sivakumar PM, Doble M (2012) Green synthesis of protein stabilized silver nanoparticles using Pseudomonas fluorescens, a marine bacterium, and its biomedical applications when coated on polycaprolactam. Ind Eng Chem Res 51:5230–5239

    Google Scholar 

  • Venkatesan P, Santhanalakshmi J (2010) Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Langmuir 26:12225–12229

    CAS  PubMed  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Karve MS, Chopade BA (2014) Novel polyhedral gold nanoparticles: green synthesis, optimization and characterization by environmental isolate of Acinetobacter sp. SW30. World J Microbiol Biotechnol 30:2723–2731

    CAS  PubMed  Google Scholar 

  • Wang H, Chen H, Wang Y, Huang J, Kong T, Lin W, Zhou Y, Lin L, Sin D, Li Q (2012) Stable silver nanoparticles with narrow size distribution non-enzymatically synthesized by Aeromonas sp. SH10 cells in the presence of hydroxyl ions. Curr Nanosci 8:838–846

    CAS  Google Scholar 

  • Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P, Liu H (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol 103:273–278

    CAS  PubMed  Google Scholar 

  • Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Meent DV, Dekkers S, Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    CAS  Google Scholar 

  • You J, Xiang M, Hu H, Cai J, Zhou J, Zhang Y (2013) Aqueous synthesis of silver nanoparticles stabilized by cationic cellulose and their catalytic and antibacterial activities. RSC Adv 2:19319–19329

    Google Scholar 

  • Zaki S, El Kady MF, Abd-El-Haleem D (2011) Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46:1571–1576

    CAS  Google Scholar 

  • Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X, He N, Zheng S (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290

    CAS  Google Scholar 

  • Zhang M, Zhang K, De Gusseme B, Verstraete W, Field R (2014) The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling 30:347–357

    CAS  PubMed  Google Scholar 

  • Zheng Y, Li Y, Deng Z (2012) Silver nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands. Chem Commun 48:6160–6162

    CAS  Google Scholar 

Download references

Acknowledgments

RS and SAW are thankful to the University Grants Commission (UGC), New Delhi, India, for providing research fellowship. UUS acknowledges the UGC for the award of UGC-DS Kothari Post-Doctoral fellowship. The authors acknowledge the financial support from the University of Potential Excellence, Focus area: Nanobiotechnology and Biotechnology (2012–2017) awarded to the University of Pune by UGC.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balu A. Chopade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Shedbalkar, U.U., Wadhwani, S.A. et al. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99, 4579–4593 (2015). https://doi.org/10.1007/s00253-015-6622-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6622-1

Keywords

Navigation