Skip to main content
Log in

Microbial communities in liquid and fiber fractions of food waste digestates are differentially resistant to inhibition by ammonia

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of different concentrations of ammonia (1.0–7.0 g/L) during mesophilic anaerobic digestion with fiber or liquid digestate as inoculum was examined. Evolution of microbial community within fiber and liquid digestates was quantitatively assessed by the intact lipid analysis methods and qualitatively by DNA fingerprint methods in order to determine their resistance to ammonia inhibition. The results showed that an increased level of total ammonia nitrogen prolonged the lag phase of fiber digestates while reduced the metabolic rate of liquid digestates. Fiber digestates had 19.6–50.9-fold higher concentrations of phospholipid fatty acids (PLFA) compared to liquid digestates, whereas concentrations of phospholipid ether lipids (PLEL) in the fiber digestates were only 2.91–17.6-fold higher compared to liquid digestates. Although the cell concentration in liquid fraction was far lower than that in the fiber one, the ammonia-resistant ability and the methanization efficiency of the liquid digestate was superior to the fiber digestate. The bacterial profiles were affected more by the type of digestate inoculum compared to the concentration of ammonia. Principal component analysis indicated that the lipids technique was superior to the DNA technique for bacterial quantification but detected less archaeal diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abouelenien F, Nakashimada Y, Nishio N (2009) Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. J Biosci Bioeng 107:293–295. doi:10.1016/j.jbiosc.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  • Bauer A, Mayr H, Hopfner-Sixt K, Amon T (2009) Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues. J Biotechnol 142:56–63. doi:10.1016/j.jbiotec.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  • Di Maria F, Sordi A, Micale C (2012) Optimization of solid state anaerobic digestion by inoculum recirculation: the case of an existing mechanical biological treatment plant. Appl Energy 97:462–469. doi:10.1016/j.apenergy.2011.12.093

    Article  Google Scholar 

  • Fotidis IA, Wang H, Fiedel NR, Luo G, Karakashev DB, Angelidaki I (2014) Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ Sci Technol 48:7669–7676. doi:10.1021/es5017075

    Article  CAS  PubMed  Google Scholar 

  • Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65. doi:10.1007/BF00384433

    Article  Google Scholar 

  • Geneva S. (2010) Soil quality determination of soil microbial diversity, In: Part1: method by phospholipid fatty acid analysis (PLFA) and phospholipid ether lipids (PLEL) analysis. ISO copyright office, ISO/TS 29843-1:2010

  • Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increase in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hao LP, Lü F, He PJ, Li L, Shao LM (2011) Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations. Environ Sci Technol 45:508–513. doi:10.1021/es102228v

    Article  CAS  PubMed  Google Scholar 

  • Hedrick DB, White DC (1993) Application of analytical microbial ecology to the anaerobic conversion of biomass to methane. Biomass Bioenergy 5:247–259. doi:10.1016/0961-9534(93)90075-F

    Article  CAS  Google Scholar 

  • Hitchcock C (1975) Structure and distribution of plant acyl lipids. In: Gilliard T, Mercer EI (eds) Recent advances in the chemistry and biochemistry of plant lipids. Academic Press, Londen, pp 1–19

    Google Scholar 

  • Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol 20:355–365. doi:10.1080/09593332008616828

    Article  CAS  Google Scholar 

  • Li YB, Park SY, Zhu JY (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energ Rev 15:821–826. doi:10.1016/j.rser.2010.07.042

    Article  CAS  Google Scholar 

  • Lin YC, Lu F, Shao LM, He PJ (2013) Influence of bicarbonate buffer on the methanogenetic pathway during thermophilic anaerobic digestion. Bioresour Technol 137:245–253. doi:10.1016/j.biortech.2013.03.093

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Xia Y, Yan Q, Shen W, Zhao M (2014) Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress. Bioresour Technol 155:98–103. doi:10.1016/j.biortech.2013.12.097

    Article  CAS  PubMed  Google Scholar 

  • Lipson DS, McGuire P, Davis G (1998) Using phospholipid fatty acids to characterize in-situ biodegradation of organic compounds in ground water. In: Stanley A, Morse S (eds) Petroleum hydrocarbons and organic chemicals in ground water: prevention, detection and remediation. Ground Water Publishing Company, Ohio, pp 437–446

    Google Scholar 

  • Lü F, Hao L, Guan D, Qi Y, Shao L, He P (2013) Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion. Water Res 47:2297–2306. doi:10.1016/j.watres.2013.01.049

    Article  PubMed  Google Scholar 

  • McKinley VL, Peacock AD, White DC (2005) Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biol Biochem 37:1946–1958. doi:10.1016/j.soilbio.2005.02.033

    Article  CAS  Google Scholar 

  • Moll DM, Summers RS, Fonseca AC, Matheis W (1999) Impact of temperature on drinking water biofilter performance and microbial community structure. Environ Sci Technol 33:2377–2382. doi:10.1021/es9900757

    Article  CAS  Google Scholar 

  • Ni BJ, Rittmann BE, Yu HQ (2011) Soluble microbial products and their implications in mixed culture biotechnology. Trends Biotechnol 29:454–463. doi:10.1016/j.tibtech.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenauer T, Illmer P (2012) PLFA profiles for microbial community monitoring in anaerobic digestion. Folia Microbiol 57:331–333. doi:10.1007/s12223-012-0136-3

    Article  CAS  Google Scholar 

  • Six W, Baere LD (1992) Dry anaerobic conversion of municipal solid waste by means of the Dranco process. Water Sci Technol 25:295–300

    CAS  Google Scholar 

  • Sundh I, Carlsson H, Nordberg A, Hansson M, Mathisen B (2003) Effects of glucose overloading on microbial community structure and biogas production in a laboratory-scale anaerobic digester. Bioresour Technol 89:237–243. doi:10.1016/S0960-8524(03)00075-0

    Article  CAS  PubMed  Google Scholar 

  • Tauber T, Wirth B, Nikolausz M, Palatinszky M, Schumann P, Marialigeti K, Toth EM (2013) The effect of easily degradable substrate feeding on the community structure of laboratory-scale wastewater sludge digesters. Acta Microbiol Immunol Hung 60:289–301. doi:10.1556/AMicr.60.2013.3.5

    Article  CAS  PubMed  Google Scholar 

  • Vestal JR, White DC (1989) Lipid analysis in microbial ecology. Bioscience 39:535–541

    Article  CAS  PubMed  Google Scholar 

  • Welin-Neilands J, Svensater G (2007) Acid tolerance of biofilm cells of Streptococcus mutans. Appl Environ Microbiol 73:5633–5638. doi:10.1128/AEM. 01049-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu M, Zeng G, Chen Y, Yu H, Huang D, Tang L (2009) Influence of Phanerochaete chrysosporium on microbial communities and lignocellulose degradation during solid-state fermentation of rice straw. Process Biochem 44:17–22. doi:10.1016/j.procbio.2008.09.00

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the National Basic Research Program (2012CB719801), National Natural Science Foundation of China (51378375, 51178327, 21177096), Shanghai Municipal Education Commission Innovation Program (13ZZ030), Fundamental Research Funds for Central Universities (0400219272), and the Collaborative Innovation Center for Regional Environmental Quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Lü.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Lü, F., Shao, L. et al. Microbial communities in liquid and fiber fractions of food waste digestates are differentially resistant to inhibition by ammonia. Appl Microbiol Biotechnol 99, 3317–3326 (2015). https://doi.org/10.1007/s00253-015-6432-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6432-5

Keywords

Navigation