Skip to main content

Advertisement

Log in

Applications of bacterial cellulose and its composites in biomedicine

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abeer MM, Mohd Amin MCI, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061. doi:10.1111/jphp.12234

    CAS  PubMed  Google Scholar 

  • Akduman B, Uygun M, Coban EP, Uygun DA, Bıyık H, Akgöl S (2013) Reversible immobilization of urease by using bacterial cellulose nanofibers. Appl Biochem Biotechnol 171:2285–2294. doi:10.1007/s12010-013-0541-3

    Article  CAS  PubMed  Google Scholar 

  • Almeida IF, Pereira T, Silva NHCS, Gomes FP, Silvestre AJD, Freire CSR, Sousa Lobo JM, Costa PC (2014) Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm :1–5

  • Alvarez OM, Patel M, Booker J, Markowitz L (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16:1–11

    Google Scholar 

  • Amorim WL, Costa HO, De Souza FC, De Castro MG, Da Silva L (2009) Experimental study of the tissue reaction caused by the presence of cellulose produced. Braz J Otorhinolaryngol 75:200–207

    Article  PubMed  Google Scholar 

  • Andersson J, Stenhamre H, Backdahl H, Gatenholm P (2010) Behaviour of human chondrocytes in engineered porous bacterial cellulose scaffolds. J Biomed Mater Res A 94:1124–1132

    PubMed  Google Scholar 

  • Andrade FK, Moreira SMG, Domingues L, Gama FMP (2010) Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD. J Biomed Mater Res A 92:9–17. doi:10.1002/jbm.a.32284

    Article  CAS  PubMed  Google Scholar 

  • Andrade FK, Silva JP, Carvalho M, Castanheira EMS, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res A 98:554–566. doi:10.1002/jbm.a.33148

    Article  PubMed  CAS  Google Scholar 

  • Andrade FK, Alexandre N, Amorim I, Gartner F, Mauricio AC, Luis AL, Gama M (2013) Studies on the biocompatibility of bacterial cellulose. J Bioact Compat Polym 28:97–112. doi:10.1177/0883911512467643

    Article  CAS  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100. doi:10.1016/j.toxlet.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  • Ávila MH, Schwarz S, Feldmann E-M, Mantas A, Von Bomhard A, Gatenholm P, Rotter N (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435. doi:10.1007/s00253-014-5819-z

    Article  CAS  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149. doi:10.1016/j.biomaterials.2005.10.026

    Article  PubMed  CAS  Google Scholar 

  • Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. Tissue Eng Regen Med 2:320–330

    Article  CAS  Google Scholar 

  • Bae SO, Shoda M (2005) Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl Microbiol Biotechnol 67:45–51. doi:10.1007/s00253-004-1723-2

    Article  CAS  PubMed  Google Scholar 

  • Barud HS, Ribeiro SJL (2013) Optically transparent membrane based on bacterial cellulose / polycaprolactone. Polímeros 23:135–138. doi:10.1590/S0104-14282013005000018

    CAS  Google Scholar 

  • Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater 2011:1–8. doi:10.1155/2011/721631

    Article  CAS  Google Scholar 

  • Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107. doi:10.1111/j.1365-2672.2009.04467.x

    Article  CAS  PubMed  Google Scholar 

  • Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci 77:6678–6682. doi:10.1073/pnas.77.11.6678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bodin A, Bäckdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007a) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434

    Article  CAS  PubMed  Google Scholar 

  • Bodin A, Concaro S, Brittberg M, Gatenholm P (2007b) Bacterial cellulose as a potential meniscus implant. Biotechnol Bioeng 97:406–408. doi:10.1002/term

    Article  CAS  Google Scholar 

  • Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901. doi:10.1016/j.biomaterials.2010.07.108

    Article  CAS  PubMed  Google Scholar 

  • Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67. doi:10.1016/S0981-9428(00)00168-6

    Article  CAS  Google Scholar 

  • Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40:137–143. doi:10.1016/S0144-8617(99)00050-8

    Article  CAS  Google Scholar 

  • Cai Z, Kim J (2010) Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91. doi:10.1007/s10570-009-9362-5

    Article  CAS  Google Scholar 

  • Cao XY, Du JJ, Lin Q, Feng YH, Wang XB, Wu ZX (2009) Preparation of carboxymethyl cellulose-bacterial cellulose composite membranes for blood purification. CN Patent 200910126692.3

  • Carreira P, Mendes JAS, Trovatti E, Serafim LS, Freire CSR, Silvestre AJD, Neto CP (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360. doi:10.1016/j.biortech.2011.04.081

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102. doi:10.1016/j.carbpol.2010.10.072

    Article  CAS  Google Scholar 

  • Chao Y, Mitarai M, Sugano Y, Shoda M (2001) Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor. Biotechnol Prog 17:781–785. doi:10.1021/bp010046b

    Article  CAS  PubMed  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  • Chen YM (2009) In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. J Bioact Compat Polym 24:137–145. doi:10.1177/0883911509102710

    Article  CAS  Google Scholar 

  • Chen YM, Xi TF, Zheng YF, Zhou L, Wan YZ (2011) In vitro structural changes of nano-bacterial cellulose immersed in phosphate buffer solution. J Biomimetics Biomater Tissue Eng 10:55–66. doi:10.4028/www.scientific.net/JBBTE.10.55

    Article  CAS  Google Scholar 

  • Chen L, Hong F, Yang X, Han S (2013) Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol 135:464–468. doi:10.1016/j.biortech.2012.10.029

    Article  CAS  PubMed  Google Scholar 

  • Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12. doi:10.1186/1754-1611-3-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553. doi:10.1016/j.carbpol.2011.03.011

    Article  CAS  Google Scholar 

  • Ching CH, Muhammad II (2007) Evaluation and optimization of microbial cellulose (nata) production using pineapple waste as substract. In: National research and innovation competition (NRIC) Penang, Malaysia

  • Ciechańska D (2004) Multifunctional bacterial cellulose / chitosan composite materials for medical applications. Fibres Text East Eur 12:69–72

    Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The Future prospects of microbial cellulose in biomedical applications. Biomacromolecules. doi:10.1021/bm060620d

    PubMed  Google Scholar 

  • Czaja W, Kyryliouk D, DePaula CA, Buechter DD (2014) Oxidation of γ-irradiated microbial cellulose results in bioresorbable, highly conformable biomaterial. J Appl Polym Sci 131. doi:10.1002/app.39995

  • Davis JR (2003) Handbook of materials for medical devices (ed) ASM International p 1–11. doi:10.1361/hmmd2003p001

  • De Olyveira GM, Manzine Costa LM, Basmaji P, Xavier Filho L (2011) Bacterial nanocellulose for medicine regenerative. J Nanotechnol Eng Med 2:034001. doi:10.1115/1.4004181

    Article  CAS  Google Scholar 

  • Deiannino NI, Couso RO, Dankert MA (1988) Lipid-linked intermediates and the synthesis of acetan in Acetobacter xylinum. J Gen Microbiol 134:1731–1736. doi:10.1099/00221287-134-6-1731

    CAS  Google Scholar 

  • Dobre L-M, Stoica-Guzun A, Stroescu M, Jipa IM, Dobre T, Ferdeş M, Ciumpiliac Ş (2011) Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films. Chem Pap 66:144–151. doi:10.2478/s11696-011-0086-2

    Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217

    CAS  Google Scholar 

  • Fan X, Zhang T, Zhao Z, Ren H, Zhang Q, Yan Y, Lv G (2012) Preparation and characterization of bacterial cellulose microfiber/goat bone apatite composites for bone repair. J Appl Polym Sci 129:595–603. doi:10.1002/app.38702

    Article  CAS  Google Scholar 

  • Fang B, Wan Y, Ph D, Tang T, Gao C, Dai K (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite / bacterial. Tissue Eng A 15:1091–1099

    Article  CAS  Google Scholar 

  • Farah LFX (1990) Process for the preparation of cellulose film, cellulose film produced thereby, artificial skin graft and its use. U.S. patent 4912049

  • Figueiredo AGPR, Figueiredo ARP, Alonso-varona A, Fernandes SCM, Palomares T, Rubio-azpeitia E, Barros-timmons A, Silvestre AJD, Neto CP, Freire CSR (2013) Biocompatible Bacterial Cellulose-Poly(2-hydroxyethyl methacrylate) Nanocomposite Films. Biomed Res Int 2013:698141. doi:10.1155/2013/698141

    PubMed Central  PubMed  Google Scholar 

  • Fink H, Gustafsson L, Bodin A, Ba H (2007) Influence of Cultivation Conditions on Mechanical and Morphological Properties of Bacterial Cellulose Tubes. Biotechnol Bioeng 97:425–434. doi:10.1002/bit

    Article  PubMed  CAS  Google Scholar 

  • Fink H, Faxälv L, Molnár GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6:1125–1130. doi:10.1016/j.actbio.2009.09.019

    Article  CAS  PubMed  Google Scholar 

  • Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264. doi:10.1007/BF02920250

    Article  PubMed  Google Scholar 

  • Fu L, Zhang Y, Li C, Wu Z, Zhuo Q, Huang X, Qiu G, Zhou P, Yang G (2012) Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J Mater Chem 22:12349. doi:10.1039/c2jm00134a

    Article  CAS  Google Scholar 

  • Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2010) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18:139–145. doi:10.1007/s10934-010-9364-6

    Article  CAS  Google Scholar 

  • Gao C, Wan Y, Lei X, Qu J, Yan T, Dai K (2011) Polylysine coated bacterial cellulose nanofibers as novel templates for bone-like apatite deposition. Cellulose 18:1555–1561. doi:10.1007/s10570-011-9571-6

    Article  CAS  Google Scholar 

  • Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε -polylysine nanocoatings. Food Hydrocoll 36:204–211

    Article  CAS  Google Scholar 

  • Gomathi N, Sureshkumar A, Neogi S (2008) RF plasma-treated polymers for biomedical applications. Curr Sci 94:1478

    CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615. doi:10.1016/j.actbio.2009.01.022

    Article  CAS  PubMed  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  PubMed  Google Scholar 

  • Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921. doi:10.1016/j.progpolymsci.2007.05.012

    Article  CAS  Google Scholar 

  • Guo X, Cavka A, Jönsson LJ, Hong F (2013) Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact 12:93. doi:10.1186/1475-2859-12-93

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hagiwara Y, Putra A, Kakugo A, Furukawa H, Gong JP (2010) Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose 17:93–101. doi:10.1007/s10570-009-9357-2

    Article  CAS  Google Scholar 

  • Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F (2010) Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. Macromol Symp 294:64–74. doi:10.1002/masy.201000008

    Article  CAS  Google Scholar 

  • Heath BP, Coffindaffer TW, Kyte KE, Smith ED, McConaughy SD (2011) Personal cleansing compositions comprising a bacterial cellulose network and cationic polymer. US Patent 2011/0039744 A1

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438. doi:10.1002/jbm.a.30570

    Article  PubMed  CAS  Google Scholar 

  • Henrik B, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330. doi:10.1002/term

    Article  CAS  Google Scholar 

  • Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72:545–549. doi:10.1016/j.carbpol.2007.09.015

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2011) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835–2845. doi:10.1016/j.actbio.2011.03.028

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C 29:1216–1219. doi:10.1016/j.msec.2008.09.017

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Liu L, Ding B, Wang H (2011a) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sensors Actuators B Chem 157:554–559. doi:10.1016/j.snb.2011.05.021

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Zhou B, Liu L, Ding B, Wang H (2011b) Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane. Sensors Actuators B Chem 159:301–306. doi:10.1016/j.snb.2011.07.014

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark M, Vogler EA (2013) Factors impacting the formation of sphere-like bacterial cellulose particles and their biocompatibility for human osteoblast growth. Biomacromolecules 14:3444–3452. doi:10.1021/bm400744a

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060. doi:10.1016/j.carbpol.2013.09.102

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gu Y (2011) Self-assembly of various guest substrates in natural cellulose substances to functional nanostructured materials. Curr Opin Colloid Interface Sci 16:470–481. doi:10.1016/j.cocis.2011.08.004

    Article  CAS  Google Scholar 

  • Huang H-C, Chen L-C, Lin S-B, Hsu C-P, Chen H-H (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101:6084–6091. doi:10.1016/j.biortech.2010.03.031

    Article  CAS  PubMed  Google Scholar 

  • Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670. doi:10.1016/j.biomaterials.2006.04.032

    Article  CAS  PubMed  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose - a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Indrarti L, Yudianti R, Amurwabumi K, Yuli N (1998) Application of biocellulose as acoustic membrane. Indones J Biotechnol :180–184

  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401. doi:10.1021/mp900056g

    Article  CAS  PubMed  Google Scholar 

  • Jeong SI, Lee SE, Yang H, Jin YH, Park CS, Park YS (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol Cell Toxicol 6:373–380

    Article  CAS  Google Scholar 

  • Johnson and Johnson (1980) Microbial polysaccharide articles and methods of production US Patent 4,655,758

  • Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271

    Article  CAS  Google Scholar 

  • Jung R, Kim Y, Kim H-S, Jin HJ (2009) Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym Ed 20:311–324. doi:10.1163/156856209X412182

    Article  CAS  PubMed  Google Scholar 

  • Kalashnikova I, Cathala B, Capron I (2011) New pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27:7471–7479. doi:10.1021/la200971f

    Article  CAS  PubMed  Google Scholar 

  • Kawano S, Tajima K, Uemori Y, Yamashita H, Erata T (2002) Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res 9:149–156. doi:10.1093/dnares/9.5.149

    Article  CAS  PubMed  Google Scholar 

  • Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotechnol. doi:10.4172/2155-9821.1000150

    Google Scholar 

  • Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72:291–296. doi:10.1007/s00253-005-0265-6

    Article  CAS  PubMed  Google Scholar 

  • Keshk SMAS, Razek TMA, Sameshima K (2006) Bacterial Cellulose Production from Beet Molasses. Afr J Biotechnol 5:1519–1523

    CAS  Google Scholar 

  • Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2010) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744. doi:10.1007/s10965-010-9470-9

    Article  CAS  Google Scholar 

  • Kim GD, Yang H, Park HR, Park CS, Park YS, Lee SE (2013) Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip J 7:201–209. doi:10.1007/s13206-013-7302-9

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose synthesized artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Marsch S, Gesichtschirurgie K, Chirurgie P, Jena F, Allee EVPJ (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96

    Article  CAS  Google Scholar 

  • Kouda T, Yano H, Yoshinaga F (1997) Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Ferment Bioeng 83:371–376. doi:10.1016/S0922-338X(97)80144-4

    Article  CAS  Google Scholar 

  • Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M, Bielecki S, Pasieka Z (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534. doi:10.5114/aoms.2013.33433

    Article  PubMed Central  PubMed  Google Scholar 

  • Krontiras P, Gatenholm P, Hägg DA (2014) Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J Biomed Mater Res B Appl Biomater :1–9. doi:10.1002/jbm.b.33198

  • Kumar V (2004) Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering. US Patent 6,800,75

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335. doi:10.1016/j.carbpol.2008.11.009

    Article  CAS  Google Scholar 

  • Lee KY, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69:2724–2733. doi:10.1016/j.compscitech.2009.08.016

    Article  CAS  Google Scholar 

  • Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32. doi:10.1002/mabi.201300298

    Article  CAS  PubMed  Google Scholar 

  • Legendre JY (2009) Assembly comprising a substrate comprising biocellulose, and a powdered cosmetic composition to be brought into contact with the substrate. US Patent 2009/0041815

  • Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA, Kreichman GS, Turkovskii II, Gumenyuk ES, Karnovich AG, Khripunov AK (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315. doi:10.1007/s10517-005-0029-4

    Article  CAS  PubMed  Google Scholar 

  • Leitão AF, Gupta S, Pedro J, Reviakine I, Gama M (2013) Hemocompatibility study of a bacterial cellulose / polyvinyl alcohol nanocomposite. Colloids Surf B: Biointerfaces 111:493–502

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642. doi:10.1016/j.msec.2009.01.006

    Article  CAS  Google Scholar 

  • Li HX, Kim S-J, Lee Y-W, Kee CD, Oh IK (2011a) Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes. Korean J Chem Eng 28:2306–2311. doi:10.1007/s11814-011-0111-8

    Article  CAS  Google Scholar 

  • Li Z, Zhu BJ, Yang JX, Peng K, Zhou BH, Xu RQ (2011b) Method for manufacture of bacterial cellulose hydrogel cold pack. CN Patent 201020239963.4

  • Limaye S, Subramanian S, Evans B, O’Neill H (2009) Photoactivated antimicrobial wound dressing and method relating thereto. US Patent 20090209897 A1

  • Lin KW, Lin HY (2004) Quality characteristics of chinese-style meatball containing bacterial cellulose (Nata). J Food Sci 69:107–111. doi:10.1111/j.1365-2621.2004.tb13378.x

    Google Scholar 

  • Lin ZD, Zhang XJ (2009) Method for preparing bacterial cellulose composite as filling and repairing material for human bone damage. CN Patent 200910036754.1

  • Lin YK, Chen KH, Ou KL (2011a) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26:508–518. doi:10.1177/0883911511415390

    Article  CAS  Google Scholar 

  • Lin YC, Wey YC, Lee ML (2011b) Bacterial cellulose film and uses as skin substitutes. US Patent 20110286948 A1

  • Lin SP, Loira Calvar I, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219. doi:10.1007/s10570-013-9994-3

    Article  CAS  Google Scholar 

  • Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119. doi:10.1016/j.biortech.2013.10.052

    Article  CAS  PubMed  Google Scholar 

  • Liu XZ, Liu ZL, Jiang ZM, Zhang CZ (2011) Process for preparation of artificial endocranium. CN Patent 201010563139.9

  • Lu H, Jiang X (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol 172:3844–3861. doi:10.1007/s12010-014-0795-4

    Article  CAS  PubMed  Google Scholar 

  • Luiz CSM, Ana LC, Philippe C, Aline SS, Hernane S, Sidney JL, Maria LCS, Santos ALC, Oliveira PC, Valle ASS (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros 20:72–77

    Article  Google Scholar 

  • Ma X, Wang RM, Guan FM, Wang TF (2010) Artificial dura mater made from bacterial cellulose and polyvinyl alcohol. CN Patent ZL200710015537.5

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51. doi:10.1016/j.carbpol.2007.07.025

    Article  CAS  Google Scholar 

  • Martínez H, Brackmann C, Enejder A, Gatenholm P (2012) Mechanical stimulation of fibroblasts in micro-channeled bacterial cellulose scaffolds enhances production of oriented collagen fibers. J Biomed Mater Res A 100:948–957. doi:10.1002/jbm.a.34035

    Article  PubMed  CAS  Google Scholar 

  • McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW (2009) Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 16:1047–1055. doi:10.1007/s10570-009-9340-y

    Article  CAS  Google Scholar 

  • Mello LR, Feltrin LT, Neto PTF, Ferraz FAP (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–150

    Article  CAS  PubMed  Google Scholar 

  • Mendes PN, Rahal SC, Pereira-Junior OCM, Fabris VE, Lenharo SLR, de Lima-Neto JF, da Cruz Landim-Alvarenga F (2009) In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair. Acta Vet Scand 51:12. doi:10.1186/1751-0147-51-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res Part B Appl Biomater 79:245–253

    Article  CAS  PubMed  Google Scholar 

  • Millon LE, Guhados G, Wan W (2008) Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 86:444–452. doi:10.1002/jbm.b.31040

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi H (2011) Nanocomposite biomaterial mimicking aortic heart valve leaflet mechanical behaviour. Proc Inst Mech Eng H J Eng Med 225:718–722. doi:10.1177/0954411911399826

    Article  CAS  Google Scholar 

  • Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/ acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473. doi:10.1016/j.carbpol.2011.12.022

    Article  CAS  Google Scholar 

  • Moosavi-nasab M, Yousefi AR, Askari H, Bakhtiyari M (2010) Fermentative production and characterization of carboxymethyl bacterial cellulose using date syrup. World Acad Sci Eng Technol 68:1467–1471

    Google Scholar 

  • Moreira S, Silva NB, Almeida-Lima J, Rocha HAO, Medeiros SRB, Alves C, Gama FM (2009) BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett 189:235–241. doi:10.1016/j.toxlet.2009.06.849

    Article  CAS  PubMed  Google Scholar 

  • Morgan JL, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186. doi:10.1038/nature11744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97. doi:10.1007/s00339-004-2932-3

    Article  CAS  Google Scholar 

  • Nakamura K, Nakamura K (2011) Antibacterial mask comprising bacterial cellulose and silver compounds, antibacterial filter for mask, and disinfection method. JP Patent 2011167226

  • Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128. doi:10.1002/adfm.200305197

    Article  CAS  Google Scholar 

  • Nge TT, Nogi M, Yano H, Sugiyama J (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17:349–363. doi:10.1007/s10570-009-9394-x

    Article  CAS  Google Scholar 

  • Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol 57:449–453. doi:10.1007/s00284-008-9228-3

    Article  CAS  PubMed  Google Scholar 

  • Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21. doi:10.1016/j.jmbbm.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  • Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 25:2997–3001

    Article  CAS  Google Scholar 

  • Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588. doi:10.1038/nnano.2010.155

    Article  CAS  PubMed  Google Scholar 

  • Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React Funct Polym 68:376–383. doi:10.1016/j.reactfunctpolym.2007.07.046

    Article  CAS  Google Scholar 

  • Oshima T, Taguchi S, Ohe K, Baba Y (2011) Phosphorylated bacterial cellulose for adsorption of proteins. Carbohydr Polym 83:953–958. doi:10.1016/j.carbpol.2010.09.005

    Article  CAS  Google Scholar 

  • Oster GA, Lantz K, Koehler K, Hoon R, Serafica G, Mormino R (2003) Solvent dehydrated microbially derived cellulose for in vivo implantation. U.S. Patent 6,599, 518

  • Paknikar KM (2009) Stabilizing solutions for submicronic particles, methods for making the same and methods of stabilizing submicronic particles USA (Patent No.7514600), Eurasia (Patent No. 010338), China (Patent No. 1950142), South Africa (Patent No. 2006/08551), Sri Lanka (Patent No. 14287), Singapore (Patent No. 127299)

  • Paknikar KM, Rajwade JM, Soni RN (2013) Therapeutic applications of silver nanoparticles, In: Chaughule RS, Watawe SC (eds) Applications of Nanomaterials, American Scientific Publishers, ISBN:1-58883-181-7, p 205–215

  • Pandey M, Cairul M, Mohd I, Ahmad N, Abeer MM (2013) Rapid synthesis of superabsorbent smart-swelling bacterial cellulose / acrylamide-based hydrogels for drug delivery. Int J Polym Sci 905471

  • Patel UD, Suresh S (2008) Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. J Colloid Interface Sci 319:462–469. doi:10.1016/j.jcis.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  • Pertile RAN, Andrade FK, Alves C, Gama M (2010) Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells. Carbohydr Polym 82:692–698. doi:10.1016/j.carbpol.2010.05.037

    Article  CAS  Google Scholar 

  • Pértile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28:526–532. doi:10.1002/btpr.1501

    Article  PubMed  CAS  Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286. doi:10.1007/s00253-011-3432-y

    Article  CAS  PubMed  Google Scholar 

  • Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289. doi:10.1016/j.actbio.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  • Quero F, Nogi M, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites. ACS Appl Mater Interfaces 2:321–330. doi:10.1021/am900817f

    Article  CAS  PubMed  Google Scholar 

  • Quirke V, Gaudillie`re JP (2008) The era of biomedicine: science, medicine, and public health in Britain and France after the Second World War. Med Hist 52:441–452

    Article  PubMed Central  PubMed  Google Scholar 

  • Recouvreux DOS, Rambo CR, Berti FV, Carminatti CA, Antônio RV, Porto LM (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng C 31:151–157. doi:10.1016/j.msec.2010.08.004

    Article  CAS  Google Scholar 

  • Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Gañan P, de la Caba K, Mondragon I (2010) Bacterial cellulose films with controlled microstructure-mechanical property relationships. Cellulose 17:661–669. doi:10.1007/s10570-009-9389-7

    Article  CAS  Google Scholar 

  • Rezaee A, Godini H, Bakhtou H (2008) Microbial cellulose as support material for the immobilization of denitrifying bacteria. Environ Eng Manag J 7:589–594

    CAS  Google Scholar 

  • Romling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    Article  PubMed  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose Biosynthesis and Function in Bacteria. Microbiol Rev 55:35–58

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rouabhia M, Asselin J, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446. doi:10.1021/am4027983

    Article  CAS  PubMed  Google Scholar 

  • Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011:175362. doi:10.1155/2011/175362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, Dos Santos RA, Gaspar AMM, de Oliveira PT, Rosa AL, Takahashi CS, Messaddeq Y, Ribeiro SJL, Marchetto R (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23:2253–2266. doi:10.1007/s10856-012-4676-5

    Article  CAS  PubMed  Google Scholar 

  • Schönfelder U, Abel M, Wiegand C, Klemm D, Elsner P, Hipler U-C (2005) Influence of selected wound dressings on PMN elastase in chronic wound fluid and their antioxidative potential in vitro. Biomaterials 26:6664–6673. doi:10.1016/j.biomaterials.2005.04.030

    Article  PubMed  CAS  Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/ liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129. doi:10.1099/00221287-11-1-123

    Article  CAS  PubMed  Google Scholar 

  • Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885. doi:10.1007/s10570-008-9264-y

    Article  CAS  Google Scholar 

  • Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355. doi:10.1007/s00253-004-1756-6

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Yang H, Wang Z (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic. Biomaterials 33:6644–6649

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8

    Article  CAS  Google Scholar 

  • Silva NHCS, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neto CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269. doi:10.1016/j.carbpol.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  • Silvestre AJD, Freire CSR, Neto CP (2014) Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv 11:1113–1124. doi:10.1517/17425247.2014.920819

    Article  CAS  PubMed  Google Scholar 

  • Solway DR, Consalter M (2010) Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds 22:17–19

    PubMed  Google Scholar 

  • Solway DR, Clark WA, Levinson DJ (2011) A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. Int Wound J 8:69–73. doi:10.1111/j.1742-481X.2010.00750.x

    Article  PubMed  Google Scholar 

  • Spaic M, Small DP, Cook JR, Wan W (2014) Characterization of anionic and cationic functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose 21:1529–1540. doi:10.1007/s10570-014-0174-x

    Article  CAS  Google Scholar 

  • Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E (2007) Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instrum Methods B 265:434–438. doi:10.1016/j.nimb.2007.09.036

    Article  CAS  Google Scholar 

  • Stoica-Guzun A, Stroescu M, Jipa I, Dobre L, Jinga S, Zaharescu T (2012) The Effect of UV-Irradiation on Poly(vinyl alcohol) Composites with Bacterial Cellulose. Macromol Symp 315:198–204. doi:10.1002/masy.201250524

    Article  CAS  Google Scholar 

  • Surma-ślusarska B, Presler S (2008) Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text East Eur 16:108–111

    Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. doi:10.1016/j.biomaterials.2004.02.049

    Article  CAS  PubMed  Google Scholar 

  • Tamahkar E, Babaç C, Kutsal T, Pişkin E, Denizli A (2010) Bacterial cellulose nanofibers for albumin depletion from human serum. Process Biochem 45:1713–1719. doi:10.1016/j.procbio.2010.07.007

    Article  CAS  Google Scholar 

  • Tanaka ML, Vest N, Ferguson CM, Gatenholm P (2014) Comparison of biomechanical properties of native menisci and bacterial cellulose implant. Int J Polym Mater 63:891–897. doi:10.1080/00914037.2014.886226

    Article  CAS  Google Scholar 

  • Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131. doi:10.1007/s11274-009-0151-y

    Article  CAS  Google Scholar 

  • Tanskul S, Amornthatree K, Jaturonlak N (2013) A new cellulose producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr Polym 92:421–428. doi:10.1016/j.carbpol.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  • Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. AMB Express 2:61. doi:10.1186/2191-0855-2-61

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thompson DN, Hamilton MA (2001) Production of bacterial cellulose from alternate feedstocks. Appl Biochem Biotechnol 91:503–513. doi:10.1385/ABAB:91-93:1-9:503

    Article  PubMed  Google Scholar 

  • Torres FG, Commeaux S, Troncoso OP (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3:864–878. doi:10.3390/jfb3040864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tournilhac FC, Lorant R (2000) Composition in the form of an oil-in-water emulsion containing cellulose fibrils, and its uses, especially cosmetic uses US Patent No 6,534,071

  • Trovatti E, Silva NHCS, Duarte IF, Rosado CF, Almeida IF, Costa P, Freire CSR, Silvestre AJD, Neto CP (2011) Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules 12:4162–4168. doi:10.1021/bm201303r

    Article  CAS  PubMed  Google Scholar 

  • Trovatti E, Freire CSR, Pinto PC, Almeida IF, Costa P, Silvestre AJD, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87. doi:10.1016/j.ijpharm.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  • Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28:1736–1743. doi:10.1007/s11814-011-0042-4

    Article  CAS  Google Scholar 

  • Wan W, Millon L (2005) Poly(vinyl alcohol) - bacterial cellulose nano-composite. US Patent 2005/0037082 A1

  • Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27:855–864. doi:10.1016/j.msec.2006.10.002

    Article  CAS  Google Scholar 

  • Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009a) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217. doi:10.1016/j.compscitech.2009.02.024

    Article  CAS  Google Scholar 

  • Wan YZ, Li YY, He F, Huang Y, Luo H L, Liang H (2009b) Method for preparing bacterial cellulose-heparin composite against blood coagulation. CN Patent 200910067684.6

  • Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218. doi:10.1016/j.msec.2009.10.006

    Article  CAS  Google Scholar 

  • Wang X, Sun DP, He HM, Yang J Z (2011) Method for preparing antibacterial wound healing-promoting dressing. CN Patent 201010139908.2

  • Wang J, Wan YZ, Luo HL, Gao C, Huang Y (2012) Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Mater Sci Eng C 32:536–541. doi:10.1016/j.msec.2011.12.006

    Article  CAS  Google Scholar 

  • Wang H, Bian L, Zhou P, Tang J, Tang W (2013) Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J Mater Chem A 1:578. doi:10.1039/c2ta00040g

    Article  CAS  Google Scholar 

  • Wanna D, Alam C, Toivola DM, Alam P (2013) Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials. Adv Nat Sci Nanosci Nanotechnol 4:045002. doi:10.1088/2043-6262/4/4/045002

    Article  CAS  Google Scholar 

  • Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture. Cytotechnology 13:107–114

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Wei J, Yoshinari M, Takemoto S, Hattori M, Kawada E, Liu B, Oda Y (2006) Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J Biomed Mater Res B Appl Biomater 81:66–75. doi:10.1002/jbmb

    Google Scholar 

  • Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84:533–538. doi:10.1016/j.carbpol.2010.12.017

    Article  CAS  Google Scholar 

  • Wiegand C, Elsner P, Hipler U-C, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 13:689–696. doi:10.1007/s10570-006-9073-0

    Article  CAS  Google Scholar 

  • Williams WS, Cannon RE, Williamst WS (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448–2452

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T (2009) Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. Eur J Vasc Endovasc Surg 37:592–596. doi:10.1016/j.ejvs.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  • Wu JM, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116–121. doi:10.1016/j.carbpol.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Lia YK, Ho CY (2013a) Glucoamylase immobilization on bacterial cellulose using periodate oxidation method. Int J Sci Eng 3:1–4. doi:10.6159/IJSE.2013.(3-4).01

  • Wu ZY, Li C, Liang H-W, Chen J-F, Yu S-H (2013b) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed Engl 52:2925–2929. doi:10.1002/anie.201209676

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Ma X, Chen S, Tao M, Yuan L, Jing Y (2014) Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits. Int J Mol Sci 15:10855–10867. doi:10.3390/ijms150610855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav V, Sun L, Panilaitis B, Kaplan DL (2013) In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold. J Tissue Eng Regen Med. doi:10.1002/term

    PubMed  Google Scholar 

  • Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404. doi:10.2323/jgam.58.397

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka DS, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24(3141):3145

    Google Scholar 

  • Yamanaka S, Ono E, Watanabe K, Kusakabe M, Suzuki Y (1990) Hollow microbial cellulose, process for preparation thereof, and artificial blood vessel formed of said cellulose. European Patent No. 0396344

  • Yang G, Fu L N, He F, Zhou P, Yu LJ (2010) Acetobacter xylinum Y05 and bio-fabrication of nano-cellulose material for skin tissue repairment. CN Patent ZL200810047793.7

  • Yang C, Gao C, Wan Y, Tang T, Zhang S, Dai K (2011) Preparation and characterization of three-dimensional nanostructured macroporous bacterial cellulose/agarose scaffold for tissue engineering. J Porous Mater 18:545–552. doi:10.1007/s10934-010-9407-z

    Article  CAS  Google Scholar 

  • Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845. doi:10.1016/j.carbpol.2011.08.079

    Article  CAS  Google Scholar 

  • Yang Y, Jia J, Xing J, Chen J, Lu S (2013) Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26. Carbohydr Polym 92:2012–2017. doi:10.1016/j.carbpol.2012.11.065

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lv X, Chen S, Li Z, Feng C, Wang H, Xu Y (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823–1835. doi:10.1007/s10570-014-0220-8

    Article  CAS  Google Scholar 

  • Yao W, Wu X, Zhu J, Sun B, Zhang YY, Miller C (2011) Bacterial cellulose membrane - A new support carrier for yeast immobilization for ethanol fermentation. Process Biochem 46:2054–2058. doi:10.1016/j.procbio.2011.07.006

    Article  CAS  Google Scholar 

  • Yin N, Li Z, Wang HP, Chen SY, Hong F, Ouyang Y (2011) Method for manufacturing bacterial cellulose scaffolding material. CN Patent 201110191767

  • Yin N, Chen S, Li Z, Ouyang Y, Hu W, Tang L, Zhang W, Zhou B, Yang J, Xu Q, Wang H (2012) Porous bacterial cellulose prepared by a facile surfactant-assisted foaming method in azodicarbonamide-NaOH aqueous solution. Mater Lett 81:131–134. doi:10.1016/j.matlet.2012.04.133

    Article  CAS  Google Scholar 

  • Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S, Sekine J (2013) Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9:6116–6122

    Article  CAS  PubMed  Google Scholar 

  • Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547. doi:10.1016/j.actbio.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  • Zakaria J, Nazeri M (2012) Optimization of bacterial cellulose production from pineapple waste: effect of temperature, pH and concentration. EnCon 2012, 5th Engineering Conference, “Engineering Towards Change - Empowering Green Solutions” 10-12th July 2012, Kuching Sarawak

  • Zang S, Zhuo Q, Chang X, Qiu G, Wu Z, Yang G (2014) Study of osteogenic differentiation of human adipose-derived stem cells (HASCs ) on bacterial cellulose. Carbohydr Polym 104:158–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle-bacteria cellulose nano-fiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160. doi:10.1002/adfm.200902104

    Article  CAS  Google Scholar 

  • Zhang W, Wang BC, Zhou BH, Hu WL, Hong F, Chen SY (2012) Method for selectively loading antibacterial nanometer silver with bacterial cellulose. CN Patent 201110191828.6

  • Zheng YD, Wu J, Gao S, Ding X, Cui Q Y, Yu Y (2012) Method for preparing collagen modified bacterial cellulose composite film. CN Patent 201110300494.1

  • Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120:2938–2944. doi:10.1002/app.33318

    Article  CAS  Google Scholar 

  • Zhijiang C, Chengwei H, Guang Y (2012) Poly(3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluations. Carbohydr Polym 87:1073–1080. doi:10.1016/j.carbpol.2011.08.037

    Article  CAS  Google Scholar 

  • Zhong CY (2011) Method for manufacturing air-filtering bacterial cellulose face mask. CN Patent ZL200910149665.8

  • Zhu H, Jia S, Yang H, Tang W, Jia Y, Tan Z (2010) Characterization of bacteriostatic sausage casing: a composite of bacterial cellulose embedded with ε- polylysine. Food Sci Biotechnol 19:1479–1484

    Article  CAS  Google Scholar 

  • Zhu C, Li F, Zhou X, Lin L, Zhang T (2014) Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res A 102:1548–1557. doi:10.1002/jbm.a.34796

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49. doi:10.1016/j.msec.2009.10.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Rajwade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajwade, J.M., Paknikar, K.M. & Kumbhar, J.V. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99, 2491–2511 (2015). https://doi.org/10.1007/s00253-015-6426-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6426-3

Keywords

Navigation