Skip to main content
Log in

Cellulose production and cellulose synthase gene detection in acetic acid bacteria

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The ability of acetic acid bacteria (AAB) to produce cellulose has gained much industrial interest due to the physical and chemical characteristics of bacterial cellulose. The production of cellulose occurs in the presence of oxygen and in a glucose-containing medium, but it can also occur during vinegar elaboration by the traditional method. The vinegar biofilm produced by AAB on the air-liquid interface is primarily composed of cellulose and maintains the cells in close contact with oxygen. In this study, we screened for the ability of AAB to produce cellulose using different carbon sources in the presence or absence of ethanol. The presence of cellulose in biofilms was confirmed using the fluorochrome Calcofluor by microscopy. Moreover, the process of biofilm formation was monitored under epifluorescence microscopy using the Live/Dead BacLight Kit. A total of 77 AAB strains belonging to 35 species of Acetobacter, Komagataeibacter, Gluconacetobacter, and Gluconobacter were analysed, and 30 strains were able to produce a cellulose biofilm in at least one condition. This cellulose production was correlated with the PCR amplification of the bcsA gene that encodes cellulose synthase. A total of eight degenerated primers were designed, resulting in one primer pair that was able to detect the presence of this gene in 27 AAB strains, 26 of which formed cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1992) Short protocols in molecular biology. John Wiley & Sons Inc, London

    Google Scholar 

  • Aydın YA, Aksoy ND (2014) Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol 98:1065–1075

    Article  PubMed  Google Scholar 

  • Carr JG, Passmore SM (1979) Methods for identifying acetic acid bacteria. In: Skinner FA, Lovelock DW (eds) Identification methods for microbiologists. Academic, London, pp 333–347

    Google Scholar 

  • Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84:96–102

    Article  CAS  Google Scholar 

  • Castro C, Cleenwerck I, Trček J, Zuluaga R, De Vos P, Caro G, Aguirre R, Putaux JL, Gañán P (2013) Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 63:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  • Cooper R, Jenkins L, Hooper S (2014) Inhibition of biofilms of Pseudomonas aeruginosa by Medihoney in vitro. J Wound Care 23:93–104

    Article  CAS  PubMed  Google Scholar 

  • Davies G, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  CAS  PubMed  Google Scholar 

  • Dayal MS, Goswami N, Sahai A, Jain V, Mathur G, Mathur A (2013) Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydr Polym 94:12–16

    Article  CAS  PubMed  Google Scholar 

  • Gomes F, Silva NHCS, Trovatti E, Serafim L, Duarte MF, Silvestre AJD, Neto CP, Freire CSR (2013) Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 55:205–211

  • Gullo M, Mamlouk D, De Vero L, Giudici P (2012) Acetobacter pasteurianus strain AB0220: cultivability and phenotypic stability over 9 years of preservation. Curr Microbiol 64:576–580

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo C, García D, Romero J, Mas A, Torija MJ, Mateo E (2013) Acetobacter strains isolated during the acetification of blueberry (Vaccinium corymbosum L.) wine. Lett Appl Microbiol 57:227–232

    Article  CAS  PubMed  Google Scholar 

  • Ibnaof A, Akakab Y, Moonmangmee S, Deeraksa A, Matsutani M, Yakushi T, Yamada M, Matsushita K (2011) Structural characterization of pellicle polysaccharides of Acetobacter tropicalis SKU1100 wild type and mutant strains. Carbohydr Polym 86:1000–1006

    Article  Google Scholar 

  • Jia S, Ou H, Chen G, Choi D, Cho K, Okabe M, Cha WS (2004) Cellulose production from Gluconobacter oxydans TQ-B2. Bioprocess Biosyst Eng 9:166–170

    Article  CAS  Google Scholar 

  • Jung HI, Lee OM, Jeong JH, Jeon YD, Park KH, Kim HS, An WG, Son HJ (2010) Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl Biochem Biotechnol 162:486–497

    Article  CAS  PubMed  Google Scholar 

  • Kanchanarach W, Theeragool G, Inoue T, Yakushi T, Adachi O, Matsushita K (2010) Acetic acid fermentation of Acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. Biosci Biotechnol Biochem 74:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Llaguno C, Polo MC (1991) El vinagre de vino. Editorial Consejo Superior de Investigaciones Científicas (CSIC). CSIC Press, Spain

    Google Scholar 

  • Mamlouk D, Gullo M (2013) Acetic acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53:377–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 5352. J Appl Microbiol 107:576–583

    Article  CAS  PubMed  Google Scholar 

  • Moonmangmee S, Kawabata K, Tanaka S, Toyama H, Adachi O, Matsushita K (2002) A novel polysaccharide involved in the pellicle formation of Acetobacter aceti. J Biosci Bioeng 93:192–200

    Article  CAS  PubMed  Google Scholar 

  • Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85:598–603

    Article  CAS  Google Scholar 

  • Neu TR, Lawrence JR (1997) Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol 24:11–25

    Article  CAS  Google Scholar 

  • Nguyen VT, Flanagan EB, Gidley EMJ, Dykes EGA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr Microbiol 57:449–453

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, Otsuyama K, Matsushita K, Fujita N, Shirai M (2011) Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol 193:6997–6998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JK, Jung JY, Park YH (2003a) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055–2059

    Article  CAS  PubMed  Google Scholar 

  • Park JK, Park YH, Jung JY (2003b) Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Bioprocess Biosyst Eng 8:83–88

    Article  CAS  Google Scholar 

  • Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25–35

    Article  CAS  PubMed  Google Scholar 

  • Ramana KV, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16:245–248

    Article  CAS  Google Scholar 

  • Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    Article  PubMed  Google Scholar 

  • Saxena IM, Brown RM Jr (1995) Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. J Bacteriol 177:5276–5283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saxena IM, Kudlicka K, Okuda K, Brown RM Jr (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735–5752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trovatti E, Serafim L, Freire CSR, Silvestre AJD, Neto CP (2011) Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym 86:1417–1420

    Article  CAS  Google Scholar 

  • Valera MJ, Laich F, González SS, Torija MJ, Mateo E, Mas A (2011) Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. Int J Food Microbiol 151:105–112

    Article  CAS  PubMed  Google Scholar 

  • Vegas C, González A, Mateo E, Mas A, Poblet M, Torija MJ (2013) Evaluation of representativity of the acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production. Food Res Int 51:404–411

    Article  CAS  Google Scholar 

  • Verschuren PG, Carodona TD, Nout MJR, de Gooijer KD, van den Heuvel JC (2000) Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles. J Biosci Bioeng 89:414–419

    Article  CAS  PubMed  Google Scholar 

  • Wiegand C, Klemm D (2006) Influence of protective agents for preservation of Gluconacetobacter xylinus on its cellulose production. Cellulose 13:485–492

    Article  CAS  Google Scholar 

  • Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404

    Article  CAS  PubMed  Google Scholar 

  • Zhang K (2013) Illustration of the development of bacterial cellulose bundles/ribbons by Gluconacetobacter xylinus via atomic force microscopy. Appl Microbiol Biotechnol 97:353–4359

  • Zogaj X, Bokranz W, Nimtz M, Römling U (2003) Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant AGL2010-22152-C03-02 from the Spanish Ministry of Science and Innovation. M. J. Valera holds the Fellowship AP2009-0843 from the Spanish Ministry of Education, Culture and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estibaliz Mateo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valera, M.J., Torija, M.J., Mas, A. et al. Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Appl Microbiol Biotechnol 99, 1349–1361 (2015). https://doi.org/10.1007/s00253-014-6198-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6198-1

Keywords

Navigation