Skip to main content
Log in

Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Anthropogenic activities such as mining, smelting, and industrial use have caused serious problems of metal(loid) pollution in nearly every country in the world. A wide range of environmental microorganisms are capable of transforming metal(loid)s into nanomaterials, i.e., biogenic nanomaterials (bio-NMs), in the environment. Although the impacts of various metal(loid)s on the ecosystems have been extensively studied, the potential influence of the bio-NMs generated in the environment to environmental organisms is largely unexplored. Using tellurium nanomaterials transformed from tellurite by a metal-reducing bacterium as model bio-NMs, we demonstrated that the bio-NMs significantly decreased siderophore production in an environmental bacterium Pseudomonas aeruginosa in both planktonic cultures and biofilms. Transcriptomic analysis revealed that the bio-NMs inhibited the expression of genes involved in biosynthesis and transport of siderophores. Siderophores secreted by certain bacteria in microbial communities can be considered as public goods that can be exploited by local communities, playing an important role in shaping microbial communities. The inhibition of siderophore production by the bio-NMs implies that bio-NMs may have an important influence on the ecosystems through altering specific functions of environmental bacteria. Taken together, this study provides a novel insight into the environmental impacts of metal(loid)s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Buckling A, Harrison F, Vos M, Brockhurst MA, Gardner A, West SA, Griffin A (2007) Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol 62(2):135–141

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Ahmed B, Kennedy DW, Wang Z, Shi L, Marshall MJ, Fredrickson JK, Isern NG, Majors PD, Beyenal H (2011) Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U (VI) immobilization. Environ Sci Technol 45(13):5483–5490

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Fredrickson JK, Beyenal H (2012) Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 14(11):2901–2910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen C-Y, Nace G, Irwin P (2003) A 6x6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. J Microbiol Methods 55:475–479

    Article  CAS  PubMed  Google Scholar 

  • Chua SL, Tan SY, Rybtke MT, Chen Y, Rice SA, Kjelleberg S, Tolker-Nielsen T, Yang L, Givskov M (2013) Bis-(3′-5′)-cyclic dimeric GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(5):2066–2075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordero OX, Ventouras L-A, DeLong EF, Polz MF (2012) Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci U S A 109(49):20059–20064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745

    Article  CAS  PubMed  Google Scholar 

  • Crusz S, Popat R, Rybtke M, Camara M, Givskov M, Tolker-Nielsen T, Diggle S, Williams P (2012) Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling 28(8):835–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding Y, Peng N, Du Y, Ji L, Cao B (2014) Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr (VI) immobilization. Appl Environ Microbiol 80(4):1498–1506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dopp E, Hartmann LM, Florea AM, Rettenmeier AW, Hirner AV (2004) Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit Rev Toxicol 34(3):301–333

    Article  CAS  PubMed  Google Scholar 

  • Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5(13):1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Greenwald J, Hoegy F, Nader M, Journet L, Mislin GL, Graumann PL, Schalk IJ (2007) Real time fluorescent resonance energy transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. A role for ferrous iron. J Biol Chem 282(5):2987–2995

    Article  CAS  PubMed  Google Scholar 

  • Gristina AG, Hobgood CD, Webb LX, Myrvik QN (1987) Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials 8(6):423–426

    Article  CAS  PubMed  Google Scholar 

  • Habimana O, Steenkeste K, Fontaine-Aupart MP, Bellon-Fontaine MN, Kulakauskas S, Briandet R (2011) Diffusion of nanoparticles in biofilms is altered by bacterial cell wall hydrophobicity. Appl Environ Microbiol 77(1):367–368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han X, Gu JD (2010) Sorption and transformation of toxic metals by microorganisms. In: Mitchell R, Gu J (eds) Environ microbiol, 2nd edn. Willy, New York, pp 153–176

    Chapter  Google Scholar 

  • Hannauer M, Yeterian E, Martin LW, Lamont IL, Schalk IJ (2010) An efflux pump is involved in secretion of newly synthesized siderophore by Pseudomonas aeruginosa. FEBS Lett 584(23):4751–4755

    Article  CAS  PubMed  Google Scholar 

  • Harrison F, Paul J, Massey RC, Buckling A (2007) Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J 2(1):49–55

    Article  PubMed  Google Scholar 

  • Hockin SL, Gadd GM (2003) Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69(12):7063–7072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalathil S, Lee J, Cho M (2011) Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem 13:1482–1485

    Article  CAS  Google Scholar 

  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117(4):877–888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D-H, Kanaly R, Hur HG (2012) Biological accumulation of tellurium nanorod structures via reduction of tellurite by Shewanella oneidensis MR-1. Bioresour Technol 125:127–131

    Article  CAS  PubMed  Google Scholar 

  • Klonowska A, Heulin T, Vermeglio A (2005) Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol 71(9):5607–5609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, Calif) 25(4):402–408

    Article  CAS  Google Scholar 

  • Mohanty A, Kathawala MH, Zhang J, Chen WN, Loo JSC, Kjelleberg S, Yang L, Cao B (2014a) Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa. Biotechnol Bioeng 111(5):858–865

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Wu Y, Cao B (2014b) Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6000-4

    Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  • Moscoso H, Saavedra C, Loyola C, Pichuantes S, Vasquez C (1998) Biochemical characterization of tellurite-reducing activities of Bacillus stearothermophilus V. Res Microbiol 149(6):389–397

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1–2):1–13

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Ng CK, Sivakumar K, Liu X, Madhaiyan M, Ji L, Yang L, Tang C, Song H, Kjelleberg S, Cao B (2013) Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnol Bioeng 110(7):1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Peek ME, Bhatnagar A, McCarty NA, Zughaier SM (2012) Pyoverdine, the major siderophore in Pseudomonas aeruginosa, evades NGAL recognition. Interdiscip Perspect Infect Dis 2012:10

    Google Scholar 

  • Peralta-Videa JR, Zhao LJ, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Peulen T-O, Wilkinson KJ (2011) Diffusion of nanoparticles in a biofilm. Environ Sci Technol 45(8):3367–3373

    Article  CAS  PubMed  Google Scholar 

  • Prosser BL, Taylor D, Dix BA, Cleeland R (1987) Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother 31(10):1502–1506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53(4):303–317

    Article  PubMed  Google Scholar 

  • Schalk IJ, Guillon L (2013) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15(6):1661–1673

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schofield EJ, Veeramani H, Sharp JO, Suvorova E, Bernier-Latmani R, Mehta A, Stahlman J, Webb SM, Clark DL, Conradson SD (2008) Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1. Environ Sci Technol 42(21):7898–7904

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Rangari VK, Sanagapalli S, Jayaraman V, Mahendra S, Singh VP (2004) Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications. Sol Energy Mater Sol Cells 82(1):315–330

    Article  CAS  Google Scholar 

  • Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109(10):2422–2436

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar K, Wang VB, Chen X, Bazan GC, Kjelleberg S, Loo SCJ, Cao B (2014) Membrane permeabilization underlies the enhancement of extracellular bioactivity in Shewanella oneidensis by a membrane-spanning conjugated oligoelectrolyte. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5973-3

  • Staupendahl G, Schindler K (1982) Optical tuning of a tellurium cavity: optical modulation and bistability in the infrared region at room temperature. Opt Quant Electron 14(2):157–167

    Article  CAS  Google Scholar 

  • Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    Article  CAS  PubMed  Google Scholar 

  • Stoodley P, Sauer K, Davies D, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56(1):187–209

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Radionuclide contamination: nanometre-size products of uranium bioreduction. Nature 419(6903):134

    Article  CAS  PubMed  Google Scholar 

  • Trutko SM, Akimenko VK, Suzina NE, Anisimova LA, Shlyapnikov MG, Baskunov BP, Duda VI, Boronin AM (2000) Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite. Arch Microbiol 173(3):178–186

    Article  CAS  PubMed  Google Scholar 

  • Tsiulyanu D, Marian S, Miron V, Liess HD (2001) High sensitive tellurium based NO2 gas sensor. Sensors Actuators B Chem 73(1):35–39

    Article  CAS  Google Scholar 

  • Turner RJ, Borghese R, Zannoni D (2012) Microbial processing of tellurium as a tool in biotechnology. Biotechnol Adv 30(5):954–963

    Article  CAS  PubMed  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  • West SA, Buckling A (2003) Cooperation, virulence and siderophore production in bacterial parasites. Proc R Soc Lond [Biol] 270(1510):37–44

    Article  Google Scholar 

  • Winkelmann G, Drechsel H (2001) Microbial siderophores. In: Rehm H.-J, Reed G (eds) Biotechnology set, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, doi:10.1002/9783527620999.ch5g

  • Xie YP, He YP, Irwin PL, Jin T, Shi XM (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environl Microbiol 77(7):2325–2331

    Article  CAS  Google Scholar 

  • Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(5):1318–1328

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Nilsson M, Gjermansen M, Givskov M, Tolker-Nielsen T (2009) Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Mol Microbiol 74(6):1380–1392

    Article  CAS  PubMed  Google Scholar 

  • Yeterian E, Martin LW, Guillon L, Journet L, Lamont IL, Schalk IJ (2010) Synthesis of the siderophore pyoverdine in Pseudomonas aeruginosa involves a periplasmic maturation. Amino Acids 38(5):1447–1459

    Article  CAS  PubMed  Google Scholar 

  • Yurkov V, Jappé J, Verméglio A (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62(11):4195–4198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zannoni D (2010) Bacterial processing of metalloids as a tool in biotechnology. J Biotechnol 150:S52–S53

    Article  Google Scholar 

  • Zhang Y, Ng CK, Cohen Y, Cao B (2014) Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures. Mol BioSyst 10(5):1035–1042

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation and Ministry of Education Singapore under its Research Centre of Excellence Programme, Singapore Centre on Environmental Life Sciences Engineering (SCELSE) (M4330005.C70) and a Start-up Grant (M4080847.030) from the College of Engineering, Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, A., Liu, Y., Yang, L. et al. Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria. Appl Microbiol Biotechnol 99, 1957–1966 (2015). https://doi.org/10.1007/s00253-014-6097-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6097-5

Keywords

Navigation