Skip to main content
Log in

Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In natural and engineered environments, microorganisms often exist as complex communities, which are key to the health of ecosystems and the success of bioprocesses in various engineering applications. With the rapid development of nanotechnology in recent years, engineered nanomaterials (ENMs) have been considered one type of emerging contaminants that pose great potential risks to the proper function of microbial communities in natural and engineered ecosystems. The impacts of ENMs on microorganisms have attracted increasing research attentions; however, most studies focused on the antimicrobial activities of ENMs at single cell and population level. Elucidating the influence of ENMs on microbial communities represents a critical step toward a comprehensive understanding of the ecotoxicity of ENMs. In this mini-review, we summarize and discuss recent research work on the impacts of ENMs on microbial communities in natural and engineered ecosystems, with an emphasis on their influences on the community structure and function. We also highlight several important research topics which may be of great interest to the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed F, Rodrigues DF (2013) Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. J Hazard Mater 256:33–39

    Article  PubMed  Google Scholar 

  • Ahmed B, Cao B, Mishra B, Boyanov MI, Kemner KM, Fredrickson JK, Beyenal H (2012) Immobilization of U (VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water. Water Res 46(13):3989–3998

    Article  PubMed  CAS  Google Scholar 

  • Alito CL, Gunsch CK (2013) Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors. Environ Sci Technol 48(2):970–976

    Article  Google Scholar 

  • Alvarez L, Cervantes F (2012) Assessing the impact of alumina nanoparticles in an anaerobic consortium: methanogenic and humus reducing activity. Appl Microbiol Biotechnol 95(5):1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437(7057):349–355

    Article  PubMed  CAS  Google Scholar 

  • Ash C, Foley J, Pennisi E (2008) Lost in microbial space. Science 320(5879):1027

    Article  PubMed  CAS  Google Scholar 

  • Battin TJ, Kammer F, Weilhartner A, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43(21):8098–8104

    Article  PubMed  CAS  Google Scholar 

  • Binh CTT, Tong T, Gaillard J-F, Gray KA, Kelly JJ (2014) Common freshwater bacteria vary in their responses to short-term exposure to nano-TiO2. Environ Toxicol Chem 33(2):317–327

    Article  PubMed  CAS  Google Scholar 

  • Bradford A, Handy RD, Readman JW, Atfield A, Mühling M (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43(12):4530–4536

    Article  PubMed  CAS  Google Scholar 

  • Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Article  PubMed  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2010) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3(1):3–8

    Google Scholar 

  • Cao B, Shi L, Brown RN, Xiong Y, Fredrickson JK, Romine MF, Marshall MJ, Lipton MS, Beyenal H (2011) Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol 13(4):1018–1031

    Article  PubMed  CAS  Google Scholar 

  • Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Fredrickson JK, Beyenal H (2012) Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 14(11):2901–2910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Y, Wang D, Zhu X, Zheng X, Feng L (2012) Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ Sci Technol 46(22):12452–12458

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74(4):569–575

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  PubMed  CAS  Google Scholar 

  • Das P, Williams CJ, Fulthorpe RR, Hoque ME, Metcalfe CD, Xenopoulos MA (2012) Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ Sci Technol 46(16):9120–9128

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Johnson WP, Arey B, Lea AS, Anderson AJ (2012) Nanospecific inhibition of pyoverdine siderophore production in Pseudomonas chlororaphis O6 by CuO nanoparticles. Chem Res Toxicol 25(5):1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Peng N, Du Y, Ji L, Cao B (2014) Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl Environ Microbiol 80(4):1498–1506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dobias J, Bernier-Latmani R (2013) Silver release from silver nanoparticles in natural waters. Environ Sci Technol 47(9):4140–4146

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Tang Y, Lilly M, Aferchich K, Yang L (2012) Antimicrobial effects of carbon nanotubes. Nano Life 2(4)

  • Doolette CL, McLaughlin MJ, Kirby JK, Batstone DJ, Harris HH, Ge H, Cornelis G (2013) Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities. Chem Cent J 7(1):46

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fabrega J, Zhang R, Renshaw JC, Liu W-T, Lead JR (2011) Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere 85(6):961–966

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320(5879):1034–1039

    Article  PubMed  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    PubMed  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8(12):e84441

    Article  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45(4):1659–1664

    Article  PubMed  CAS  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19(12):2226–2238

    Article  PubMed  CAS  Google Scholar 

  • Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 1:121–123

    Article  Google Scholar 

  • Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez de Aberasturi D, Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  PubMed  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  PubMed  CAS  Google Scholar 

  • Harrison J, Ceri H, Turner A (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938

    Article  PubMed  CAS  Google Scholar 

  • Hau HH, Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258

    Article  PubMed  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2009) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25

    Article  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98(3):1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Jang H, Pell LE, Korgel BA, English DS (2003) Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. J Photochem Photobiol A Chem 158(2):111–117

    Article  CAS  Google Scholar 

  • Jean-Marc B, Tawna M, Lewis O (1994) Role of microorganisms in soil bioremediation. In : Anderson TA and Coates JR (ed) Bioremediation through rhizosphere technology. ACS Symposium Series, vol 563. American Chemical Society, pp 2–10

  • Jeong E, Im W-T, Kim D-H, Kim M-S, Kang S, Shin H-S, Chae S-R (2014) Different susceptibilities of bacterial community to silver nanoparticles in wastewater treatment systems. J Environ Sci Health A 49(6):685–693

    Article  CAS  Google Scholar 

  • Jin L, Son Y, Yoon TK, Kang YJ, Kim W, Chung H (2013) High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf 88:9–15

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Son Y, DeForest JL, Kang YJ, Kim W, Chung H (2014) Single-walled carbon nanotubes alter soil microbial community composition. Sci Total Environ 466–467:533–538

    Article  PubMed  Google Scholar 

  • Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27(9):1895–1903

    Article  PubMed  CAS  Google Scholar 

  • Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158(9):2900–2905

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43(7):2648–2653

    Article  PubMed  CAS  Google Scholar 

  • Khodakovskaya MV, Kim B-S, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    Article  PubMed  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  PubMed  CAS  Google Scholar 

  • Kloepfer J, Mielke R, Nadeau J (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71(5):2548–2557

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Konopka A (2009) What is microbial community ecology? ISME J 3(11):1223–1230

    Article  PubMed  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602

    Article  PubMed  CAS  Google Scholar 

  • Li W-R, Xie X-B, Shi Q-S, Zeng H-Y, Ou-Yang Y-S, Chen Y-B (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Li D, Cui F, Zhao Z, Liu D, Xu Y, Li H, Yang X (2013) The impact of titanium dioxide nanoparticles on biological nitrogen removal from wastewater and bacterial community shifts in activated sludge. Biodegradation:1–11

  • Liang Z, Das A, Hu Z (2010) Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res 44(18):5432–5438

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Paddon-Row MN, Gooding JJ (2004) Heterogeneous electron-transfer kinetics for flavin adenine dinucleotide and ferrocene through alkanethiol mixed monolayers on gold electrodes. J Phys Chem B 108(24):8460–8466

    Article  CAS  Google Scholar 

  • Liu X, Qi S, Li Y, Yang L, Cao B, Tang CY (2013) Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly. Water Res 47(9):3081–3092

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Jin X, Cao B, Tang CY (2014) Bactericidal activity of silver nanoparticles in environmentally relevant freshwater matrices: influences of organic matter and chelating agent. J Environ Chem Eng 2(1):525–531

    Article  Google Scholar 

  • Lorenz C, Windler L, von Goetz N, Lehmann R, Schuppler M, Hungerbühler K, Heuberger M, Nowack B (2012) Characterization of silver release from commercially available functional (nano) textiles. Chemosphere 89(7):817–824

    Article  PubMed  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46(13):6893–6899

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Chen Z, Qiu Z, Li Y, Laing GD, Liu A, Yan C (2014) Gold and silver nanoparticle effects on ammonia-oxidizing bacteria cultures under ammoxidation. Chemosphere. doi:10.1016/j.chemosphere.2014.01.075

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366

    Article  PubMed  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J, Brock TD (1997) Biology of microorganisms, vol 985. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Marambio-Jones C, Hoek EV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12(5):1531–1551

    Article  CAS  Google Scholar 

  • Masrahi A, VandeVoort A, Arai Y (2014) Effects of silver nanoparticle on soil-nitrification processes. Arch Environ Contam Toxicol 66(4):504–513

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Jones MA, Gunsolus IL, Meyer BM, Christenson CJ, Haynes CL (2013) Impact of TiO2 Nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis. Anal Chem 85(12):5810–5818

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mohanty A, Kathawala MH, Zhang J, Chen WN, Loo JS, Kjelleberg S, Yang L, Cao B (2014) Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in Pseudomonas aeruginosa. Biotechnol Bioeng 111(5):858–865

    Article  PubMed  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Murty B, Shankar P, Raj B, Rath B, Murday J (2013) Applications of nanomaterials textbook of nanoscience and nanotechnology. Springer, pp 107–148

  • Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol 18(3):273–278

    Article  PubMed  CAS  Google Scholar 

  • Ng CK, Sivakumar K, Liu X, Madhaiyan M, Ji L, Yang L, Tang C, Song H, Kjelleberg S, Cao B (2013) Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnol Bioeng 110(7):1831–1837

    Article  PubMed  CAS  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F, Gonçalves F, Soares AMVM, Cunha A, Almeida A, Gomes NNCM, Pereira R (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350

    Article  PubMed  CAS  Google Scholar 

  • Nyberg L, Turco RF, Nies L (2008) Assessing the impact of nanomaterials on anaerobic microbial communities. Environ Sci Technol 42(6):1938–1943

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292(5519):1096–1099

    Article  PubMed  CAS  Google Scholar 

  • Osmond MJ, Mccall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4(1):15–41

    Article  PubMed  CAS  Google Scholar 

  • Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res Int 20(2):1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Puay N-Q, Qiu G, Ting Y-P (2014) Effect of ZnO nanoparticles on biological wastewater treatment in a sequencing batch reactor (SBR). J Clean Prod (In press)

  • Qiu Z, Yang D, Jin M, Hu L, Chen Z (2012a) The conjugative transfer of the multiresistance gene between bacteria is significantly promoted by nano-alumina. J Nanomed Nanotechnol 3(154):2

    Google Scholar 

  • Qiu Z, Yu Y, Chen Z, Jin M, Yang D, Zhao Z, Wang J, Shen Z, Wang X, Qian D (2012b) Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci 109(13):4944–4949

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  PubMed  CAS  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53(4):303–317

    Article  PubMed  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197(1–4):143–148

    Article  CAS  Google Scholar 

  • Shah V, Jones J, Dickman J, Greenman S (2014) Response of soil bacterial community to metal nanoparticles in biosolids. J Hazard Mater 274:399–403

    Article  PubMed  CAS  Google Scholar 

  • Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45(18):6039–6050

    Article  PubMed  CAS  Google Scholar 

  • Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Cañas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197

    Article  PubMed  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  CAS  Google Scholar 

  • Sun X, Sheng Z, Liu Y (2013) Effects of silver nanoparticles on microbial community structure in activated sludge. Sci Total Environ 443:828–835

    Article  PubMed  CAS  Google Scholar 

  • Takenaka S, Yamashita K, Takagi M, Hatta T, Tanaka A, Tsuge O (1999) Study of the DNA interaction with water-soluble cationic fullerene derivatives. Chem Lett 28:319–320

    Article  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41(8):2985–2991

    Article  PubMed  CAS  Google Scholar 

  • Tsao N, Kanakamma PP, Luh T-Y, Chou C-K, Lei H-Y (1999) Inhibition of Escherichia coli-induced meningitis by carboxyfullerence. Antimicrob Agents Chemother 43(9):2273–2277

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    Article  PubMed  Google Scholar 

  • Vishal S, Daniel C, Virginia KW, Shreya S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9(2):024001

    Article  Google Scholar 

  • Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Article  CAS  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13(3):218–227

    Article  PubMed  CAS  Google Scholar 

  • Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. Trends Anal Chem 30(1):72–83

    Article  CAS  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4(8):597–607

    Article  PubMed  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336–4345

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G, Drechsel H (2008) Microbial siderophores. Biotechnology Set, Second Edition:199–246

  • Wissing S, Müller R (2002) Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release 81(3):225–233

    Article  PubMed  CAS  Google Scholar 

  • Wissing SA, Müller RH (2003) Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm 254(1):65–68

    Article  PubMed  CAS  Google Scholar 

  • Xu X-HN, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43(32):10400–10413

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Chen Q, Wall JD, Hu Z (2012a) Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Res 46(4):1176–1184

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Xu M, Wall JD, Hu Z (2012b) Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag 32(5):816–825

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Zhang T, Wang T, Fang Z (2012) Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing. Environ Sci Technol 46(24):13244–13252

    Article  PubMed  CAS  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84(8):2042–2050

    Article  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9(3):479–489

    Article  Google Scholar 

  • Zhang T, Shao M-F, Ye L (2011) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Striolo A, Cummings PT (2005) C60 binds to and deforms nucleotides. Biophys J 89(6):3856–3862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng X, Chen Y, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45(17):7284–7290

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation and Ministry of Education Singapore under its Research Centre of Excellence Programme, Singapore Centre on Environmental Life Sciences Engineering (SCELSE) (M4330005.C70), a Start-up Grant (M4080847.030) from College of Engineering, and a Seed Project Grant (M4081178.030) from the Sustainable Earth Office, Nanyang Technological University, Singapore. The authors thank the Singapore Ministry of Education (Grant No. MOE2011-T2-2-035, ARC 3/12) for the Research Scholarship to Yichao Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, A., Wu, Y. & Cao, B. Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Appl Microbiol Biotechnol 98, 8457–8468 (2014). https://doi.org/10.1007/s00253-014-6000-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6000-4

Keywords

Navigation