Skip to main content

Advertisement

Log in

Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A number of studies have been conducted to improve chromophore maturation, folding kinetics, thermostability, and other traits of green fluorescent protein (GFP). However, no specific work aimed at improving the thermostability of the yellow fluorescent protein (YFP) and of the pH-sensitive, yet thermostable color variants of GFP has so far been done. The protein variants reported in this study were improved through rational multiple site-directed mutagenesis of GFP (ASV) by introducing up to ten point mutations including the mutations near and at the chromophore region. Therefore, we report the development and characterization of fast folder and thermo-tolerant green variant (FF-GFP), and a fast folder thermostable yellow fluorescent protein (FFTS-YFP) endowed with remarkably improved thermostability and folding kinetics. We demonstrate that the fluorescence intensity of this yellow variant is not affected by heating at 75 °C. Moreover, we have developed a pH-unresponsive cyan variant AcS-CFP, which has potential use as part of in vivo imaging irrespective of intracellular pH. The combined improved properties make these fluorescent variants ideal tools to study protein expression and function under different pH environments, in mesophiles and thermophiles. Furthermore, coupling of the FFTS-YFP and AcS-CFP could potentially serve as an ideal tool to perform functional analysis of live cells by multicolor labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen JB, Sternber C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bizzarri R, Nifosi R, Abbruzzetti S, Rocchia W, Guidi S, Arosio D, Garau G, Campanini B, Grandi E, Ricci F, Viappiani C, Beltram F (2007) Green fluorescent protein ground states: the influence of a second protonation site near the chromophore. Biochemistry 46:5494–5504

    Article  CAS  PubMed  Google Scholar 

  • Bizzarri R, Serresi M, Luin S, Beltram F (2009) Green fluorescent protein based pH indicators for in vivo use: a review. Ann Bioanal Chem 393:1107–1122

    Article  CAS  Google Scholar 

  • Cava F, de Pedro MA, Blas-Galindo E, Waldo GS, Westblade LF, Berenguer J (2008) Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Environ Microbiol 10:605–13

    Article  CAS  PubMed  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–8

    Article  CAS  PubMed  Google Scholar 

  • Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Article  CAS  PubMed  Google Scholar 

  • Cubitt AB, Woolenweber LA, Heim R (1999) Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 58:19–30

    Article  CAS  PubMed  Google Scholar 

  • Erijman A, Dantes A, Bernheim R, Shifman JM, Peleg Y (2011) Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering. J Struct Biol 175:171–7

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Denervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Article  CAS  PubMed  Google Scholar 

  • Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational auto oxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heim R, Cubitt A, Tsien R (1995) Improved green fluorescence. Nature 373:663–64

    Article  CAS  PubMed  Google Scholar 

  • Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H + antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS (2000) Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275:6047–6050

    Article  CAS  PubMed  Google Scholar 

  • Kiss C, Temirov J, Chasteen L, Waldo GS, Bradbury ARM (2009) Directed evolution of an extremely stable fluorescent protein. Protein Eng Des Sel 22:313–323

    Article  CAS  PubMed  Google Scholar 

  • Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a non-invasive intracellular pH indicator. Biophys J 74:1591–1599

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95:6803–6808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195

    Article  CAS  PubMed  Google Scholar 

  • Mitra RD, Silva CM, Youvan DC (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173:13–17

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  CAS  PubMed  Google Scholar 

  • Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–95

    Article  CAS  PubMed  Google Scholar 

  • Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearse AG (1980) Histochemistry, theoretical and applied. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  • Schlee S, Reinstein J (2002) The DnaK/ClpB chaperone system from Thermus thermophilus. Cell Mol Life Sci 59:1598–1606

    Article  CAS  PubMed  Google Scholar 

  • Schulte A, Lorenzen I, Bottcher M, Plieth C (2006) A novel fluorescent pH probe for expression in plants. Plant Methods 2:7. doi:10.1186/1746-4811-2-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Stepanenko OV, Stepanenko OV, Kuznetsova IM, Verkhusha VV, Turoverov KK (2013) Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. Int Rev Cell Mol Biol 302:221–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsien R (1998) The green fluorescent protein. Annu Rev Biochem 67:509–44

    Article  CAS  PubMed  Google Scholar 

  • Tsien R, Prasher D (2000) Green fluorescent protein properties. In: Chalfie M, Kain S (eds) Applications, and protocols. Wiley-Liss, New York, pp 97–118

    Google Scholar 

  • Uemuraa H, Kimb C, Saitoc K, Ebinea T, Uedaa P, Schulze-Lefertb NA (2012) Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc Natl Acad Sci USA 109:1784–1789

    Article  Google Scholar 

  • Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227:707–711

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Asahara H, Gaucher EA, Chong S (2012) Reconstitution of translation from Thermus thermophilus reveals a minimal set of components sufficient for protein synthesis at high temperatures and functional conservation of modern and ancient translation components. Nucleic Acids Res 40:7932–7945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zietkiewicz S, Krzewska J, Liberek K (2004) Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J Biol Chem 279:44376–44383

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Mara Giangrossi of the University of Camerino for kindly providing plasmid pGFP (ASV), Prof. M. Pillay of Vaal University of Technology (Johannesburg-Vanderjiblpark, South Africa) who made it possible to manage the issues of research activity of N.A., and Dr. Stoyan Stoychev of Council for Scientific and Industrial Research (CSIR) (Pretoria, South Africa) for technical assistance during a brief research stay of N.A. at the CSIR. The cost of the research was covered by University of Camerino (Camerino, Italy) and partly by Vaal University of Technology (Johannesburg-Vanderjiblpark, SouthAfrica).

Conflict of interests

The authors declare that there is no financial or any other conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Spurio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliye, N., Fabbretti, A., Lupidi, G. et al. Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics. Appl Microbiol Biotechnol 99, 1205–1216 (2015). https://doi.org/10.1007/s00253-014-5975-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5975-1

Keywords

Navigation