Skip to main content
Log in

Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biogenic synthesis of metal nanoparticles has been well proved by using bacteria, fungi, algae, actinomycetes, plants, etc. Among the different microorganisms used for the synthesis of metal nanoparticles, actinomycetes are less known. Although, there are reports, which have shown that actinomycetes are efficient candidates for the production of metal nanoparticles both intracellularly and extracellularly. The nanoparticles synthesized by the members of actinomycetes present good polydispersity and stability and possess significant biocidal activities against various pathogens. The present review focuses on biological synthesis of metal nanoparticles and their application in medicine. In addition, the toxicity of these biogenic metal nanoparticles to human beings and environment has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 27:313–318

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp. Langmuir 19:3550–3553

    CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003c) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824

    CAS  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28(3):1081–1086

  • Asanithi P, Chaiyakun S, Limsuwan P (2012) Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012, Article ID 963609 (8 pages)

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    PubMed  CAS  Google Scholar 

  • Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R (2013) Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Mater 6:5942–5950

    CAS  Google Scholar 

  • Babadi VY, Najafi L, Najafi A, Gholami H, Zarji MEB, Golzadeh J, Amraie E, Shirband A (2012) Evaluation of iron oxide nanoparticles effects on tissue and enzymes of liver in rats. J Pharm Biomed Sci 23(23):1–4

    Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 2:244–249

    Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. J Biochem Biophys 48:331–335

    CAS  Google Scholar 

  • Bar H, Bhudi DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139

    CAS  Google Scholar 

  • Barreto GP, Morales G, Quintanilla MLL (2013) Microwave assisted synthesis of ZnO nanoparticles: effect of precursor reagents, temperature, irradiation time, and additives on nano-ZnO morphology development. J Mater 2013, Article ID 478681 (11 pages)

  • Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato P, Rai M (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6(4):376–380

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160–164

    PubMed  CAS  Google Scholar 

  • Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7(8):2696–2708

    PubMed  CAS  Google Scholar 

  • Card JW, Zeldin DC, Bonner JC, Nestmann ER (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295:L400–L411

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chauhun R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81:607–621

    Google Scholar 

  • Chen X, Schluesener HJ (2008) Nano-silver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    PubMed  CAS  Google Scholar 

  • Choi OK, Hu ZQ (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    PubMed  CAS  Google Scholar 

  • Correa-Llanten DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Factories 12:75

    CAS  Google Scholar 

  • Dar M, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine 9:105–110

    PubMed  CAS  Google Scholar 

  • Dar MI, Chandiran AK, Gratzel M, Nazeeruddin BK, Shivashankar SA (2014) Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J Mater Chem 2:1662–1667

    CAS  Google Scholar 

  • Darroudi M, Ahmad MB, Abdullah AH, Ibrahim NA (2011) Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles. Int J Nanomedicine 6:569–574

    PubMed  CAS  PubMed Central  Google Scholar 

  • Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3. Biotech 4:121–126

    Google Scholar 

  • Deepa S, Kanimozhi K, Panneerselvam A (2013) Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived actinomycetes. Int J Curr Microbiol Appl Sci 2(9):223–230

    Google Scholar 

  • Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharmacol Sci 103(7):1931–1944

    Google Scholar 

  • Duffin R, Tran L, Brown D, Stone V, Donaldson K (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856

    PubMed  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Google Scholar 

  • El-Rafie HM, El-Rafie MH, Zahran MK (2013) Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym 96(2):403–410

    PubMed  CAS  Google Scholar 

  • El-Sheikh MA, El-Rafie SM, Abdel-Halim ES, El-Rafie MH (2013) Green synthesis of hydroxyethyl cellulose-stabilized silver nanoparticles. J Polymers 2013, 2013), Article ID 650837, (11 pages)

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenerg 2:1–5

    Google Scholar 

  • Gade A, Gaikwad S, Duran N, Rai M (2013a) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59

    PubMed  Google Scholar 

  • Gade A, Gaikwad S, Durán N, Rai M (2013b) Screening of different species of Phoma for synthesis of silver nanoparticles. Biotechnol Appl Biochem 60(5):482–493

    PubMed  CAS  Google Scholar 

  • Gaikwad S, Birla S, Ingle A, Gade A, Marcato P, Rai M, Duran N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24(2):1974–1982

    CAS  Google Scholar 

  • Ghorbani HR (2013) Biosynthesis of silver nanoparticles using Salmonella typhirium. J Nanostruct Chem 3:29

    Google Scholar 

  • Gupta I, Duran N, Rai M (2012) Nano-silver toxicity: emerging concerns and consequences in human health. In: Rai M, Cioffi N (eds) Nano-antimicrobials: progress and prospects. Springer Verlag, Germany, pp 525–548

    Google Scholar 

  • Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Winget DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4(12):1409–1420

    PubMed  CAS  PubMed Central  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    CAS  Google Scholar 

  • Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F (2013) Fungus-mediated synthesis of gold nanoparticles: a novel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol 13(2):1427–1430

    PubMed  CAS  Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro 19(7):975–983

    PubMed  CAS  Google Scholar 

  • Iavicoli I, Leso V, Bergamaschi A (2012) Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies. J Nanomater 2012: Article ID 964381 (36 pages)

  • Ingle AP, Gade AK, Pierrat S, Sönnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    CAS  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res 11(8):2079–2085

    CAS  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res Int 2013, Article ID 639725, (5 pages)

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Resin Pharma Sci 9(6):385–406

    Google Scholar 

  • Isaac RSR, Sakthivel G, Murthy CH (2013) Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotechnol 2013, Article ID 906592 (6 pages)

  • Kalabegishvili T, Kirkesali E, Ginturi E, Rcheulishvili A, Murusidze I, Pataraya D, Gurielidze M, Bagdavadze N, Kuchava N, Gvarjaladze D, Lomidze L (2013) Synthesis of gold nanoparticles by new strains of thermophilic actinomycetes. Nano Stud 7:255–260

    Google Scholar 

  • Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65:150–153

    PubMed  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    PubMed  CAS  Google Scholar 

  • Karthik L, Kumar G, Vishnu Kirthi A, Rahuman AA, Bhaskara Rao KV (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267

    PubMed  CAS  Google Scholar 

  • Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D (2013) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. doi:10.1016/j.arabjc.2013.04.007

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    CAS  Google Scholar 

  • Kim J-H, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48(6):3477–3485

    PubMed  CAS  Google Scholar 

  • Kolekar TV, Yadav HM, Bandgar SS, Deshmukh PY (2011) Synthesis by sol–gel method and characterization of ZnO nanoparticles. Indian Streams Res J 1(1):1–4

    Google Scholar 

  • Kora AJ, Rastogi L (2013) Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg Chem Appl 2013, Article ID 871097 (7 pages)

  • Kumar A, Kaur K, Sharma S (2013) Synthesis, characterization and antibacterial potential of silver nanoparticles by Morus nigra leaf extract. Indian J Pharm Biol Res 1(4):16–24

    CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Bio Med Res Int 2013 Article ID 287638 (9 pages)

  • Metuku RP, Pabba S, Burra S, Hima BN, Gudikandula K, Charya MAS (2014) Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: Their characterization and antimicrobial activity. 3. Biotech 4(3):227–234

    Google Scholar 

  • Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5:389–399

    PubMed  CAS  Google Scholar 

  • Mittal S, Pandey AK (2014) Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed Res Int 2014: Article ID 891934 (14 pages)

  • Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Ramirez JT (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    PubMed  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:1–7

    Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from S. aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5:452–456

    PubMed  CAS  Google Scholar 

  • Narasimha G, Janardhan A, Alzohairy M, Khadri H, Mallikarjuna K (2013) Extracellular synthesis, characterization and antibacterial activity of silver nanoparticles by actinomycetes isolative. Int J Nano Dimens 4:77–83

    CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    PubMed  CAS  Google Scholar 

  • Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    PubMed  Google Scholar 

  • Orłowski P, Krzyżowska M, Winnicka A, Chwalibóg A, Sawosz E (2012) Toxicity of silver nanoparticles in monocytes and keratinocytes: potential to induce inflammatory reactions. Cent Eur J Immunol 37(2):123–130

    Google Scholar 

  • Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–94

  • Oza G, Pandey S, Gupta A, Kesarkar R, Sharon M (2012) Biosynthetic reduction of gold ions to gold nanoparticles by Nocardia farcinica. J Microbiol Biotechnol Res 4:511–515

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27:1712–1720

    Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem 110:16248–16253

    CAS  Google Scholar 

  • Pandey S, Oza G, Mewada A, Sharon M (2012) Green synthesis of highly stable gold nanoparticles using Momordica charantia as nano fabricator. Arch App Sci Res 4(2):1135–1141

    CAS  Google Scholar 

  • Papp S, Patakfalvi R, Dekany I (2007) Formation and stabilization of noble metal nanoparticles. Croat Chem Acta 80(3–4):493–502

    CAS  Google Scholar 

  • Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chem Biochem 9:34–41

    Google Scholar 

  • Pattekari P, Zheng Z, Zhang X, Levchenko T, Torchilinb V, Lvov Y (2011) Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys Chem Chem Phys 13:9014–9019

    PubMed  CAS  Google Scholar 

  • Pavani KV, Kumar NS (2013) Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species Kvp12. Am J Nanomater 1(2):24–26

    Google Scholar 

  • Phuoc TX (2014) Complete green synthesis of gold nanoparticles using laser ablation in deionized water containing chitosan and starch. J Mater Sci Nanotechnol 1:401

    Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Google Scholar 

  • Prakasham RS, Buddana SK, Yannam SK, Guntuku GS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–621

    PubMed  CAS  Google Scholar 

  • Prijaragini S, Sathishkumar SR, Bhaskararao KV (2013) Biosynthesis of silver nanoparticles using actinobacteria and evaluating its antimicrobial and cytotoxicity activity. Int J Pharm Pharm Sci 5:709–712

    Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from a endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L.). Nano Biomed Eng 3(3):174–178

    CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    PubMed  CAS  Google Scholar 

  • Rai M, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    PubMed  CAS  Google Scholar 

  • Rai M, Ingle A, Gupta I, Gaikwad S, Gade A, Rubilar O, Duran N (2014) Cyto-, geno-, and ecotoxicity of copper nanoparticles. In: Durán N, Guterres SS, Alves OL (eds) Nanotoxicology: materials, methodologies and assessments. Springer Verlog, New York, pp 325–345

    Google Scholar 

  • Raimondi F, Scherer GG, Kotz R, Wokaun A (2005) Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed Engl 44:2190–2209

    PubMed  CAS  Google Scholar 

  • Rajamanickam U, Mylsamy P, Viswanathan S, Muthusamy P (2012) Biosynthesis of zinc nanoparticles using actinomycetes for antibacterial food packaging. International Conference on Nutrition and Food Sciences IPCBEE vol 39 IACSIT

  • Rajasree SRR, Suman TY (2012) Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pac J Trop Dis 2:S796–S799

    Google Scholar 

  • Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkuma K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3:44

    Google Scholar 

  • Rajeshkumar S, Malarkodi C, Paulkuma K, Vanaja M, Gnanajobitha G, Kannan C, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Metals 2014: Article ID 692643, 8 pages

  • Ramesh S (2013) Sol–gel synthesis and characterization of nanoparticles. J Nanosci 2013: Article ID 929321 (8 pages)

  • Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculata. J Nanosci Nanotechnol 1(1):41–45

    Google Scholar 

  • Raut RW, Haroon ASM, Malghe US, Nikam BT, Kashid SB (2013) Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Adv Mater Lett 4(8):650–654

    Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson KA, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Mat 6:2295–2350

    CAS  Google Scholar 

  • Reza Ghorbani H, Akbar Safekordi A, Attar H, Rezayat Sorkhabadib SM (2011) Biological and non-biological methods for silver nanoparticles synthesis. Chem Biochem Eng Q 25:317–326

    Google Scholar 

  • Rosemary MJ, Pradeep T (2003) Solvothermal synthesis of silver nanoparticles from thiolates. J Colloid Interface Sci 268:81–84

    PubMed  CAS  Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces 81:358–362

    PubMed  CAS  Google Scholar 

  • Sadowski Z (2010) Biosynthesis and application of silver and gold nanoparticles, silver nanoparticles, David Pozo Perez (Ed.), ISBN: 978-953-307-028-5, InTech, Available from: http://www.intechopen.com/books/silver-nanoparticles/biosynthesis-and-application-of-silver-and-goldnanoparticles

  • Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:1–6

    Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetric synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    PubMed  CAS  Google Scholar 

  • Sanjenbam P, Gopal JV, Kannabiran K (2014) Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. J De Mycologie Médicale, Available from: http://dx.doi.org/10.1016/j.mycmed.2014.03.004

  • Sastry M, Ahmed A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Nanosci 85(2):162–170

    CAS  Google Scholar 

  • Sathiyanarayanan G, Vignesh V, Saibaba G, Vinothkanna A, Dineshkumar K, Viswanathana MB, Selvin J (2014) Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: a novel and greener approach. RSC Adv 4:22817–22827

    CAS  Google Scholar 

  • Selvakumar P, Viveka S, Prakash S, Jasminebeaula S, Uloganathan R (2012) Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived Streptomyces rochei. Int J Pharm Biol Sci 3:188–197

    CAS  Google Scholar 

  • Shah R, Oza G, Pandey S, Sharon M (2012) Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res 2(4):485–492

    CAS  Google Scholar 

  • Shahverdi AR, Minaian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    CAS  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96

    CAS  Google Scholar 

  • Sharma N, Pinnaka AK, Raje M, Ashish FNU, Bhattacharyya MS, Choudhury AR (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11:86

    CAS  Google Scholar 

  • Shelar GB, Chavan AM (2014) Fungus-mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch Appl Sci Res 6(2):111–114

    Google Scholar 

  • Shirley AD, Dayanand A, Sreedhar B, Dastager SG (2010) Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Dig J Nanomater Biostruc 5:447–451

    Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2008) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:103–112

    Google Scholar 

  • Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A (2013) TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicol 7(1):48–60

    CAS  Google Scholar 

  • Silambarasan S, Jayanthi A (2013) Biosynthesis of silver nanoparticles using Pseudomonas fluorescens. Res J Biotechnol 8(3):71–75

    CAS  Google Scholar 

  • Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213:249–259

    PubMed  CAS  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–761

    PubMed  CAS  Google Scholar 

  • Sivalingham P, Antony JJ, Siva D, Achiraman S, Anbarasu K (2012) Mangrove Streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles. Colloids Surf B: Biointerfaces 98:12–17

    Google Scholar 

  • Subashini J, Kannabiran K (2013) Antimicrobial activity of Streptomyces sp. VITBT7 and its synthesized silver nanoparticles against medically important fungal and bacterial pathogens. Der Pharm Lett 5:192–200

    CAS  Google Scholar 

  • Sukanya MK, Saju KA, Praseetha PK, Sakthivel G (2013) Potential of biologically reduced silver nanoparticles from Actinomycete cultures. J Nanosci 1-8

  • Sundarmoorthi E, Devarasu S, Vengadesh Prabhu K (2011) Antimicrobial and wound healing activity of silver nanoparticles synthesized from Streptomyces aureofaciens. Int J Pharm Res Dev 12:69–75

    Google Scholar 

  • Sunitha A, Rimal IRS, Geo S, Sornalekshmi S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5: 39-45

  • Sunitha A, Geo S, Sukanya S, Praseetha PK, Dhanya RP (2014) Biosynthesis of silver nanoparticles from actinomycetes for therapeutic applications. Int J Nano Dimens 5:155–162

    Google Scholar 

  • Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f.sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol. doi:10.5402/2013/515091, 5 pages

    Google Scholar 

  • Tsibakhashvili NY, Kirkesali EI, Pataraya DT, Gurielidze MA, Kalabegishvili TL, Gvarjaladze DN, Tsertsvadze GI, Frontasyeva MV, Zinicovscaia II, Wakstein MS, Khakhanov SN, Shvindina NV, Shklover VY (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Adv Sci Lett 4:3408–3417

  • Turner NA, Xia F, Azhar G, Zhang X, Liu L, Wei JY (1998) Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 30(9):1781–1789

    Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nanoparticles by Streptomyces sp for development of antimicrobial textiles. Glob J Biotechnol Biochem 5:153–160

    CAS  Google Scholar 

  • Vala AK (2014) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy. doi:10.1002/ep.11949

    Google Scholar 

  • Van der Veer WM, Bloemen MC, Ulrich MM, Molema G, Van Zuijlen PP, Middelkoop E, Niessen FB (2009) Potential cellular and molecular causes of hypertrophic scar formation. Burns 35:15–29

    PubMed  Google Scholar 

  • Vengadesh Prabu K, Sundaramoorthi C, Devarasu S (2011) Biosynthesis of silver nanoparticles from Streptomyces aureofaciens. J Pharm Res 4:820–822

    Google Scholar 

  • Vidya C, Hiremath S, Chandraprabha MN, Antonyraj MAL, Gopala IV, Jain A, Bansal K (2013) Green synthesis of ZnO nanoparticles by Calotropis Gigantea. Int J Curr Eng Technol 1:118–120

    Google Scholar 

  • Vidyasagar GM, Shankaravva B, Begum R, Imrose, Raibagkar RL (2012) Antimicrobial activity of silver nanoparticles synthesized by Streptomyces species JF714876. Int J Pharm Sci Nanotechnol 5:1638–1642

    Google Scholar 

  • Waghmare SS, Deshmukh AM, Kulkarni W, Oswaldo LA (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univ J Environ Res Technol 1:64–69

    CAS  Google Scholar 

  • Waghmare SS, Deshmukh AM, Sadowski Z (2014) Biosynthesis, optimization, purification and characterization of gold nanoparticles. Afr J Microbiol Res 8:138–146

    CAS  Google Scholar 

  • Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521

    PubMed  CAS  Google Scholar 

  • Wani IA, Khatoon S, Gangulya A, Ahmed J, Ganguli AK, Ahmad T (2010) Silver nanoparticles: large scale solvothermal synthesis and optical properties. Mater Res Bull 45(8):1033–1038

    CAS  Google Scholar 

  • Zamir R, Azmi BZ, Ahangar HA, Zamiri G, Husin MS, Wahab ZA (2012) Preparation and characterization of silver nanoparticles in natural polymers using laser ablation. Bull Mater Sci 35(5):727–731

    Google Scholar 

  • Zonooz NF, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3. Scientia Iranica 18:1631–1635

Download references

Acknowledgments

Support from The National Science Centre (NCN)—“Grant Symphony 1” No. 2013/08/W/NZ8/00701 and from the project of “Enhancing Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences—visiting professors” conducted under Sub-measure 4.1.1 Human Capital Operational Programme—Task 7 (Project No. POKL.04.01.01-00-081/10) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golinska, P., Wypij, M., Ingle, A.P. et al. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98, 8083–8097 (2014). https://doi.org/10.1007/s00253-014-5953-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5953-7

Keywords

Navigation