Skip to main content

Advertisement

Log in

Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Carboxylic acids are important bulk chemicals that can be used as building blocks for the production of polymers, as acidulants, preservatives and flavour compound or as precursors for the synthesis of pharmaceuticals. Today, their production mainly takes place through catalytic processing of petroleum-based precursors. An appealing alternative would be to produce these compounds from renewable resources, using tailor-made microorganisms. Saccharomyces cerevisiae has already demonstrated its value for bioethanol production from renewable resources. In this review, we discuss Saccharomyces cerevisiae engineering potential, current strategies for carboxylic acid production as well as the specific challenges linked to the use of lignocellulosic biomass as carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott DA, Zelle RM, Pronk JT, Van Maris AJA (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9(8):1123–1136. doi:10.1111/j.1567-1364.2009.00537.x

    CAS  PubMed  Google Scholar 

  • Ågren R, Otero JM, Nielsen J (2013) Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. J Ind Microbiol Biotechnol 40(7):735–747. doi:10.1007/s10295-013-1269-3

    PubMed  Google Scholar 

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14(6):4135–4144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aliverdieva DA, Mamaev DV, Bondarenko DI, Sholtz KF (2006) Properties of yeast Saccharomyces cerevisiae plasma membrane dicarboxylate transporter. Biochemistry 71:1161–1169

    CAS  PubMed  Google Scholar 

  • Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    CAS  Google Scholar 

  • Almeida JRM, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82(4):625–638. doi:10.1007/s00253-009-1875-1

    CAS  PubMed  Google Scholar 

  • Almeida JRM, Runquist D, Sanchez i Nogue V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6(3):286–299. doi:10.1002/biot.201000301

    CAS  PubMed  Google Scholar 

  • Alriksson B, Horvath IS, Jönsson LJ (2010) Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem 45:264–271

    CAS  Google Scholar 

  • Angumeenal AR, Venkappayya D (2013) An overview of citric acid production. LWT Food Sci Technol 50(2):367–370

    CAS  Google Scholar 

  • Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (2002) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 79(5):568–579

    CAS  PubMed  Google Scholar 

  • Baruffini E, Serafini F, Lodi T (2009) Construction and characterization of centromeric, episomal and GFP-containing vectors for Saccharomyces cerevisiae prototrophic strains. J Biotechnol 143(4):247–254. doi:10.1016/j.jbiotec.2009.08.007

    CAS  PubMed  Google Scholar 

  • BASF (2013) BASF and CSM establish 50–50 joint venture for biobased succinic acid. BASF. http://basf.com/group/pressrelease/P-12-444. Accessed 7 Oct 2013

  • Beauprez JJ, De Mey M, Soetaert WK (2010) Microbial succinic acid production: natural versus metabolic engineered producers. Process Biochem 45(7):1103–1114. doi:10.1016/j.procbio.2010.03.035

    CAS  Google Scholar 

  • Bellissimi E, van Dijken JP, Pronk JT, van Maris AJ (2009) Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 9(3):358–364. doi:10.1111/j.1567-1364.2009.00487.x

    CAS  PubMed  Google Scholar 

  • Bergdahl B, Sandström A, Borgström C, Boonyawan T, van Niel EWJ, Gorwa-Grauslund MF (2013) Engineering yeast hexokinase 2 for improved tolerance toward xylose-induced inactivation. PloS One 8 (9). doi:10.1371/journal.pone.0075055

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539. doi:10.1039/b922014c

    CAS  Google Scholar 

  • Bro C, Regenberg B, Forster J, Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102–111. doi:10.1016/j.ymben.2005.09.007

    CAS  PubMed  Google Scholar 

  • Burgard AP, Pharkya P, Osterhout RE (2010) Microorganisms for the production of adipic acid and other compounds. US Patent 7,799,545 B2, 21 Sep 2010

  • Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236(4803):806–812. doi:10.1126/science.3033825

    CAS  PubMed  Google Scholar 

  • Cai Z, Zhang B, Li Y (2012) Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J 7(1):34–46. doi:10.1002/biot.201100053

    CAS  PubMed  Google Scholar 

  • Cao N, Du J, Gong CS, Tsao GT (1996) Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl Environ Microbiol 62(8):2926–2931

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caprara G, Cassar L, Rivolta L, Scardigno S (1977) Process for preparing glycolic acid and its polymers. US Patent 4052452 A, 4 October 1977

  • Cavka A, Jönsson LJ (2014) Comparison of the growth of filamentous fungi and yeasts in lignocellulose-derived media. Biocatal Agric Biotechnol (0). doi:10.1016/j.bcab.2014.04.003

  • Chahal SP, Starr JN (2006) Lactic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/14356007.a15_097.pub2

  • Chen Y, Bao J, Kim I-K, Siewers V, Nielsen J (2014) Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng 22:104–109. doi:10.1016/j.ymben.2014.01.005

    CAS  PubMed  Google Scholar 

  • Cheng KK, Zhao XB, Zeng J, Wu RC, Xu YZ, Liu DH, Zhang JA (2012) Downstream processing of biotechnological produced succinic acid. Appl Microbiol Biotechnol 95(4):841–850. doi:10.1007/s00253-012-4214-x

    CAS  PubMed  Google Scholar 

  • Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40(D1):D700–D705. doi:10.1093/nar/gkr1029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung H, Tanke RS, Torrence GP (2011) Acetic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 209–234. doi:10.1002/14356007.a01_045.pub2

  • Clarke L, Carbon J (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287(5782):504–509. doi:10.1038/287504a0

    CAS  PubMed  Google Scholar 

  • Cok B, Tsiropoulos I, Roes AL, Patel MK (2013) Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuel Bioprod Bior 8:16–29. doi:10.1002/bbb.1427

    Google Scholar 

  • Cornils B, Lappe P (2010) Dicarboxylic acids, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 287–301. doi:10.1002/14356007.a08_523.pub2

  • Curran KA, Leavitt JM, Karim AS, Alper HS (2013) Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55–66. doi:10.1016/j.ymben.2012.10.003

    CAS  PubMed  Google Scholar 

  • Da Silva N, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12(2):197–214. doi:10.1111/j.1567-1364.2011.00769.x

    PubMed  Google Scholar 

  • Datta R (2000) Hydroxycarboxylic acids. In: Kirk-Othmer encyclopedia of chemical technology, vol 13. Wiley, Hoboken, pp 1–22. doi:10.1002/0471238961.0825041804012020.a01.pub2

  • de Guzman D (2013) BASF, Cargill, Novozymes bio-acrylic acid milestone. http://greenchemicalsblog.com/2013/07/08/basf-cargill-novozymes-bio-acrylic-acid-milestone/. Accessed 25 March 2014

  • de Jong E, Higson A, Walsh P, Wellisch M (2012) Perspective: product developments in the bio-based chemicals arena. Biofuel Bioprod Bior 6:606–624. doi:10.1002/bbb.1360

    Google Scholar 

  • de Kok S, Kozak BU, Pronk JT, van Maris AJA (2012) Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Res 12(4):387–397. doi:10.1111/j.1567-1364.2012.00799.x

    PubMed  Google Scholar 

  • Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, Verplaetse A, Boles E, Thevelein JM (2013a) Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6(1):89. doi:10.1186/1754-6834-6-89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demeke MM, Dumortier F, Li Y, Broeckx T, Foulquie-Moreno MR, Thevelein JM (2013b) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6(1):120. doi:10.1186/1754-6834-6-120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6(5):1415. doi:10.1039/c3ee00069a

    CAS  Google Scholar 

  • Engel CA, Straathof AJJ, Zijlmans TW, van Gulik WM, van der Wielen LAM (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78(3):379–389

    Google Scholar 

  • Eri A, Mikiko T, Minetaka S, Jun-Ichi N, Kazuyuki S (1998) Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86. doi:10.1016/s0922-338x(98)80131-1

  • Famili I, Förster J, Nielsen J, Palsson B (2003) Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci U S A 100(23):13134–13139. doi:10.1073/pnas.2235812100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Förster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253. doi:10.1101/gr.234503

    PubMed Central  PubMed  Google Scholar 

  • Fujitomi K, Sanda T, Hasunuma T, Kondo A (2012) Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 111:161–166. doi:10.1016/j.biortech.2012.01.161

    CAS  PubMed  Google Scholar 

  • Garcia Sanchez R, Karhumaa K, Fonseca C, Sanchez Nogue V, Almeida JRM, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13. doi:10.1186/1754-6834-3-13

    PubMed Central  PubMed  Google Scholar 

  • Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741. doi:10.1038/nature02046

    CAS  PubMed  Google Scholar 

  • Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter CJ, Hutchison CA III, Smith HO (2008a) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220. doi:10.1126/science.1151721

    CAS  PubMed  Google Scholar 

  • Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA III (2008b) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105(51):20404–20409. doi:10.1073/pnas.0811011106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):35–37. doi:10.1038/nprot.2007.14

    CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546–& doi:10.1126/science.274.5287.546

    CAS  PubMed  Google Scholar 

  • Gong J, Zheng H, Wu Z, Chen T, Zhao X (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27(6):996–1005. doi:10.1016/j.biotechadv.2009.05.016

    PubMed  Google Scholar 

  • Guadalupe-Medina V, Metz B, Oud B, van Der Graaf CM, Mans R, Pronk JT, van Maris AJA (2014) Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Microb Biotechnol 7(1):44–53. doi:10.1111/1751-7915.12080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177. doi:10.1007/10_2007_062

    PubMed  Google Scholar 

  • Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, Troyanskaya OG (2007) Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23(20):2692–2699. doi:10.1093/bioinformatics/btm403

    CAS  PubMed  Google Scholar 

  • Hoefnagels R, Smeets E, Faaij A (2010) Greenhouse gas footprints of different biofuel production systems. Renew Sustain Energ Rev 14:1661–1694

    CAS  Google Scholar 

  • Hollenberg C, Degelmann A, Kustermann-Kuhn B, Royer H (1976) Characterization of 2-μm DNA of Saccharomyces cerevisiae by restriction fragment analysis and integration in an Escherichia coli plasmid. Proc Natl Acad Sci U S A 73(6):2072–2076. doi:10.1073/pnas.73.6.2072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu C, Zhao X, Zhao J, Wu S, Zhao Z (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100(20):4843–4847. doi:10.1016/j.biortech.2009.04.041

    CAS  PubMed  Google Scholar 

  • Huisjes EH, Luttik MAH, Almering MJH, Bisschops MMM, Dang DHN, Kleerebezem M, Siezen R, van Maris AJA, Pronk JT (2012) Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for D-galacturonate metabolism. J Biotechnol 162(2–3):303–310. doi:10.1016/j.jbiotec.2012.10.003

    CAS  PubMed  Google Scholar 

  • Hustede H, Haberstroh H-J, Schinzig E (2000) Gluconic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 37–43. doi:10.1002/14356007.a12_449

  • Ida Y, Hirasawa T, Furusawa C, Shimizu H (2013) Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Appl Microbiol Biotechnol 97(11):4811–4819. doi:10.1007/s00253-013-4760-x

    CAS  PubMed  Google Scholar 

  • IHS Chemical (2010) Fumaric acid. http://www.ihs.com/products/chemical/planning/ceh/fumaric-acid.aspx. Accessed 7 Oct 2013

  • Il Bioeconomista (2013) Canada invests 12 million $ to support BioAmber Sarnia new bio-based succinic acid plant. http://ilbioeconomista.com/2013/09/23/canada-invests-12-million-to-support-bioamber-sarnia-new-bio-based-succinic-acid-plant/. Accessed 7 Oct 2013

  • Itaconix (2013) Technology. Itaconix. http://www.itaconix.com/technology.html. Accessed 3 Oct 2013

  • Jäger G, Büchs J (2012) Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J 7(9):1122–1136. doi:10.1002/biot.201200033

    PubMed  Google Scholar 

  • Jang Y-S, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY (2012) Bio-based production of C2–C6 platform chemicals. Biotechnol Bioeng 109(10):2437–2459. doi:10.1002/bit.24599

    CAS  PubMed  Google Scholar 

  • Jarboe LR, Royce LA, Liu P (2013) Understanding biocatalyst inhibition by carboxylic acids. Front Microbiol 4:272. doi:10.3389/fmicb.2013.00272

    PubMed Central  PubMed  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17(3):320–326. doi:10.1016/j.copbio.2006.05.008

    CAS  PubMed  Google Scholar 

  • Jones RP (1990) Roles for replicative deactivation in yeast-ethanol fermentations. Crit Rev Biotechnol 10(3):205–222. doi:10.3109/07388559009038208

    CAS  PubMed  Google Scholar 

  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22(5):359–368. doi:10.1002/yea.1216

    CAS  PubMed  Google Scholar 

  • Kataoka M, Sasaki M, Hidalgo AR, Nakano M, Shimizu S (2001) Glycolic acid production using ethylene glycol-oxidizing microorganisms. Biosci Biotechnol Biochem 65(10):2265–2270

    CAS  PubMed  Google Scholar 

  • Kennedy CJ, Boyle PM, Waks Z, Silver PA (2009) Systems-level engineering of nonfermentative metabolism in yeast. Genetics 183(1):385–397. doi:10.1534/genetics.109.105254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SR, Park YC, Jin YS, Seo JH (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31(6):851–861. doi:10.1016/j.biotechadv.2013.03.004

    CAS  PubMed  Google Scholar 

  • Klement T, Buchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431. doi:10.1016/j.biortech.2012.11.141

    CAS  PubMed  Google Scholar 

  • Koivistoinen OM, Kuivanen J, Barth D, Turkia H, Pitkänen JP, Penttilä M, Richard P (2013) Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb Cell Fact 12(1):82. doi:10.1186/1475-2859-12-82

    PubMed Central  PubMed  Google Scholar 

  • Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran J-MG, Pronk JT, van Maris AJA (2013) Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 21C:46–59. doi:10.1016/j.ymben.2013.11.005

    Google Scholar 

  • Kraft Chemical (2013) Fumaric acid. http://www.kraftchemical.com/products/food/bakery/fumaric-acid.aspx. Accessed 7 Oct 2013

  • Krahulec S, Klimacek M, Nidetzky B (2011) Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. J Biotechnol 158(4):192–202. doi:10.1016/j.jbiotec.2011.08.026

    PubMed  Google Scholar 

  • Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31(6):945–961. doi:10.1016/j.biotechadv.2013.02.008

    CAS  PubMed  Google Scholar 

  • Kurzrock T, Weuster-Botz D (2010) Recovery of succinic acid from fermentation broth. Biotechnol Lett 32(3):331–339. doi:10.1007/s10529-009-0163-6

    CAS  PubMed  Google Scholar 

  • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409. doi:10.1016/j.femsyr.2004.09.010

    CAS  PubMed  Google Scholar 

  • Laadan B, Almeida JRM, Rådström P, Hahn-Hägerdal B, Gorwa-Grauslund M (2008) Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 25(3):191–198. doi:10.1002/yea.1578

    CAS  PubMed  Google Scholar 

  • Lakshmanan M, Koh G, Chung BK, Lee DY (2014) Software applications for flux balance analysis. Brief Bioinform 15(1):108–122. doi:10.1093/bib/bbs069

    PubMed  Google Scholar 

  • Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67(3):1163–1170. doi:10.1128/AEM.67.3.1163-1170.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JW, Kim HU, Choi S, Yi J, Lee SY (2011) Microbial production of building block chemicals and polymers. Curr Opin Biotechnol 22(6):758–767. doi:10.1016/j.copbio.2011.02.011

    CAS  PubMed  Google Scholar 

  • Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305. doi:10.1038/nrmicro2737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li T, Souma Y, Xu Q (2006) Carbonylation of formaldehyde catalyzed by p-toluenesulfonic acid. Catal Today 111(3–4):288–291. doi:10.1016/j.cattod.2005.10.038

    CAS  Google Scholar 

  • Liu P, Jarboe LR (2012) Metabolic engineering of biocatalysts for carboxylic acid production. Comput Struct Biotechnol J 3(4):e201210011

    PubMed Central  PubMed  Google Scholar 

  • Liu C, Lievense J (2005) Lactic acid producing yeast. US Patent Application 20050112737 A1, 26 May 2005

  • Lopez-Garzon CS, Straathof AJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.04.002

    PubMed  Google Scholar 

  • Markets and Research (2012) Synthetic and bio-based adipic acid market—global industry analysis, market size, share, growth and forecast, 2012–2018. http://www.researchandmarkets.com/reports/2238358/synthetic_and_biobased_adipic_acid_market. Accessed 25 March 2014

  • Miller EN, Zhang Xi, Yomano LP, Wang X, Shanmugam KT, Ingram LO (2014) Over-expression of NADH-dependent oxidoreductase (FucO) for increasing furfural or 5-hydroxymethylfurfural tolerance. US Patent Application 20140024086, 23 Jan 2014

  • Miltenberger K (2000) Hydroxycarboxylic acids, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. doi:10.1002/14356007.a13_507

  • Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363(Pt 3):769–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moon TS, Yoon SH, Lanza AM, Roy-Mayhew JD, Prather KL (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75(3):589–595. doi:10.1128/AEM.00973-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myriant (2013) Broad pipeline, diverse applications. http://www.myriant.com/products/product-pipeline.cfm. Accessed 25 March 2014

  • Naesby M, Nielsen SVS, Nielsen CAF, Green T, Tange TØ, Simón E, Knechtle P, Hansson A, Schwab MS, Titiz O, Folly C, Archila RE, Maver M, van Sint FS, Boussemghoune T, Janes M, Kumar ASS, Sonkar SP, Mitra PP, Benjamin VAK, Korrapati N, Suman I, Hansen EH, Thybo T, Goldsmith N, Sorensen AS (2009) Yeast artificial chromosomes employed for random assembly of biosynthetic pathways and production of diverse compounds in Saccharomyces cerevisiae. Microb Cell Factories 8:45. doi:10.1186/1475-2859-8-45

    Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412. doi:10.1128/MMBR.00025-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen J, Jewett MC (2008) Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res 8(1):122–131. doi:10.1111/j.1567-1364.2007.00302.x

    CAS  PubMed  Google Scholar 

  • Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18(2):201–211. doi:10.1021/bp010179x

    CAS  PubMed  Google Scholar 

  • Noskov VN, Chuang R-Y, Gibson DG, Leem S-H, Larionov V, Kouprina N (2011) Isolation of circular yeast artificial chromosomes for synthetic biology and functional genomics studies. Nat Protoc 6(1):89–96. doi:10.1038/nprot.2010.174

    CAS  PubMed  Google Scholar 

  • Novozymes (2012) Novozymes develops fungus to produce biochemicals. http://novozymes.com/en/news/news-archive/Pages/Novozymes-develops-fungus-to-produce-biochemicals.aspx. Accessed 3 Oct 2013

  • OpxBio (2013) The commercialization of bioacrylic acid. http://www.opxbio.com/2012/09/the-commercialization-of-bioacrylic-acid/. Accessed 25 March 2014

  • Österlund T, Nookaew I, Nielsen J (2012) Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv 30(5):979–988. doi:10.1016/j.biotechadv.2011.07.021

    PubMed  Google Scholar 

  • Österlund T, Nookaew I, Bordel S, Nielsen J (2013) Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol 7:10. doi:10.1186/1752-0509-7-36

    Google Scholar 

  • Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS ONE 8 (1). doi:10.1371/journal.pone.0054144

  • Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92(4):689–695

    CAS  PubMed  Google Scholar 

  • Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63(2):349–404

    PubMed Central  PubMed  Google Scholar 

  • Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23(6):455–464. doi:10.1002/yea.1370

    CAS  PubMed  Google Scholar 

  • Picataggio S, Beardslee T (2011) Biological methods for preparing adipic acid. US Patent 8,241,879 B2, 14 Aug 2012

  • Pinel D, D’Aoust F, del Cardayre SB, Bajwa PK, Lee H, Martin VJ (2011) Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol 77(14):4736–4743. doi:10.1128/aem.02769-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polen T, Spelberg M, Bott M (2013) Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 167(2):75–84. doi:10.1016/j.biotec.2012.07.008

    CAS  PubMed  Google Scholar 

  • Pronk JT, Yde Steensma H, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12(16):1607–1633. doi:10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4

    CAS  PubMed  Google Scholar 

  • Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12(6):518–525. doi:10.1016/j.ymben.2010.08.005

    CAS  PubMed  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44(2):185–195

    CAS  Google Scholar 

  • Research and Markets (2011) Itaconic acid—Global Strategic Business Report. http://www.researchandmarkets.com/reports/1946784/itaconic_acid_global_strategic_business_report. Accessed 25 March 2014

  • Riemenschneider W (2000) Carboxylic acids, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, pp 99–111. doi:10.1002/14356007.a05_235

  • Rocha I, Maia P, Evangelista P, Vilaca P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4:45. doi:10.1186/1752-0509-4-45

    PubMed Central  PubMed  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8(6):423–488. doi:10.1002/yea.320080602

    CAS  PubMed  Google Scholar 

  • Roquette (2010) BioHub®-Glycolic acid programme-METabolic EXplorer. Roquette. http://www.roquette-chemicalbioindustry.com/topic_id=10476/article_id=6730/. Accessed 12 Feb 2014

  • Roquette (2013) Gluconic acid. http://www.roquette-chemicalbioindustry.com/gluconic-acid-1/industry_id=6/. Accessed 25 March 2014

  • Sànchez i Nogué V (2013) Industrial challenges in the use of Saccharomyces cerevisiae for ethanolic fermentation of lignocellulosic biomass. PhD, Lund University, Sweden

  • Sànchez i Nogué V, Narayanan V, Gorwa-Grauslund MF (2013) Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH. Appl Microbiol Biotechnol 97(16):7517–7525

    PubMed Central  PubMed  Google Scholar 

  • Sauer B (1994) Recycling selectable markers in yeast. Bio Techniques 16(6):1086–1088

    CAS  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169

    CAS  PubMed  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2):100–108. doi:10.1016/j.tibtech.2007.11.006

    CAS  PubMed  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 16 years research on lactic acid production with yeast—ready for the market? Biotechnol Genet Eng 27(1):229–256. doi:10.1080/02648725.2010.10648152

    CAS  Google Scholar 

  • Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307. doi:10.1038/nprot.2011.308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrader J, Etschmann MMW, Sell D, Hilmer JM, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds—current industrial processes and future prospects. Biotechnol Lett 26(6):463–472. doi:10.1023/B:BILE.0000019576.80594.0e

    CAS  PubMed  Google Scholar 

  • Shao Z, Zhao H (2013) Construction and engineering of large biochemical pathways via DNA assembler. Methods Mol Biol 1073:85–106. doi:10.1007/978-1-62703-625-2_9

    PubMed  Google Scholar 

  • Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol 334(3):229–236. doi:10.1016/j.crvi.2010.12.016

    PubMed  Google Scholar 

  • Singh SK, Ahmed SU, Pandey A (2006) Metabolic engineering approaches for lactic acid production. Process Biochem 41(5):991–1000. doi:10.1016/j.procbio.2005.12.004

    CAS  Google Scholar 

  • Soh KC, Miskovic L, Hatzimanikatis V (2012) From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res 12(2):129–143. doi:10.1111/j.1567-1364.2011.00771.x

    CAS  PubMed  Google Scholar 

  • Solis-Escalante D, Kuijpers NGA, Bongaerts N, Bolat I, Bosman L, Pronk JT, Daran J-M, Daran-Lapujade P (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13(1):126–139. doi:10.1111/1567-1364.12024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soucaille P (2009) Glycolic acid production by fermentation from renewable resources. US Patent Application 20090155867 A1, 18 June 2009

  • Straathof AJJ, Sie S, Franco TT, van der Wielen LAM (2005) Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol 67(6):727–734

    CAS  PubMed  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    CAS  PubMed  Google Scholar 

  • Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu J-H, Zhao H (2012) Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnol Bioeng 109(8):2082–2092. doi:10.1002/bit.24481

    CAS  PubMed  Google Scholar 

  • Sun X, Lin Y, Huang Q, Yuan Q, JiYuan Y (2013) A novel muconic acid biosynthesis approach by shunting tryptophan biosynthesis via anthranilate. Appl Environ Microbiol 79(13):4024–4030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundström L, Larsson S, Jönsson LJ (2010) Identification of Saccharomyces cerevisiae genes involved in the resistance to phenolic fermentation inhibitors. Appl Biochem Biotechnol 161(1–8):106–115

    PubMed  Google Scholar 

  • Swinnen S, Thevelein JM, Nevoigt E (2012) Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12(2):215–227. doi:10.1111/j.1567-1364.2011.00777.x

    CAS  PubMed  Google Scholar 

  • Tanaka K, Ishii Y, Ogawa J, Shima J (2012) Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 78(22):8161–8163. doi:10.1128/AEM.02356-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • The Chemical Company (2013) Citric acid. http://www.thechemco.com/chemical/citric-acid/. Accessed 25 March 2014

  • Thomson Reuters (2014) Web of Science, core collection, advanced search. http://apps.webofknowledge.com/WOS_AdvancedSearch_input.do?SID=Z2UJLopIwroFvJkI2tf&product=WOS&search_mode=AdvancedSearch. Accessed 5 Feb 2014

  • Toivari MH, Nygard Y, Penttilä M, Ruohonen L, Wiebe MG (2012) Microbial D-xylonate production. Appl Microbiol Biotechnol 96(1):1–8. doi:10.1007/s00253-012-4288-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Transparency Market Research (2012) Glycolic acid market—global industry analysis, size, share, growth, trends and forecast, 2012–2018. http://www.academia.edu/4251027/Glycolic_Acid_Market_-_Global_Industry_Analysis_Size_Share_Growth_Trends_and_Forecast_2012_-_2018. Accessed 25 March 2014

  • Transparency Market Research (2013) Acetic acid market for VAM, PTA, acetate esters, acetic anhydride and other applications—global industry analysis, size, share, growth, trends and forecast, 2012–2018. http://www.transparencymarketresearch.com/acetic-acid-market.html. Accessed 25 March 2014

  • Tsigie Y, Wang C-Y, Truong C-T, Ju Y-H (2012) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19):9216–9222. doi:10.1016/j.biortech.2011.06.047

    Google Scholar 

  • Valdehuesa KN, Liu H, Nisola GM, Chung WJ, Lee SH, Park SJ (2013) Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical. Appl Microbiol Biotechnol 97(8):3309–3321. doi:10.1007/s00253-013-4802-4

    CAS  PubMed  Google Scholar 

  • Van de Vyver S, Román-Leshkov Y (2013) Emerging catalytic processes for the production of adipic acid. Catal Sci Technol 3(6):1465. doi:10.1039/c3cy20728e

    Google Scholar 

  • van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek 63(3–4):343–352

    PubMed  Google Scholar 

  • van Maris AJA, Konings WN, van Dijken JP, Pronk JT (2004a) Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 6(4):245–255. doi:10.1016/j.ymben.2004.05.001

    PubMed  Google Scholar 

  • van Maris AJA, Winkler AA, Porro D, van Dijken JP, Pronk JT (2004b) Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol 70(5):2898–2905. doi:10.1128/aem.70.5.2898-2905.2004

    PubMed Central  PubMed  Google Scholar 

  • van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HWW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90(4):391–418. doi:10.1007/s10482-006-9085-7

    CAS  PubMed  Google Scholar 

  • Verhoff FH (2011) Citric acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 197–202. doi:10.1002/14356007.a07_103.pub2

  • Vink ETH, Davies S, Kolstad JJ (2010) The eco-profile for current Ingeo polylactide production. Ind Biotechnol 2955(6):212–224

    Google Scholar 

  • Weber C, Brückner C, Weinreb S, Lehr C, Essl C, Boles E (2012) Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78(23):8421–8430

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20(4):412–419. doi:10.1016/j.copbio.2009.07.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass. vol I—results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy. doi:10.2172/15008859

  • Weusthuis RA, Lamot I, van der Oost J, Sanders JP (2011) Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol 29(4):153–158. doi:10.1016/j.tibtech.2010.12.007

    CAS  PubMed  Google Scholar 

  • Wierckx N, Koopman F, Ruijssenaars HJ, de Winde JH (2011) Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol 92(6):1095–1105. doi:10.1007/s00253-011-3632-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkening S, Lin G, Fritsch ES, Tekkedil MM, Anders S, Kuehn R, Nguyen M, Aiyar RS, Proctor M, Sakhanenko NA, Galas DJ, Gagneur J, Deutschbauer A, Steinmetz LM (2014) An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae. Genetics. doi:10.1534/genetics.113.160291

    PubMed Central  PubMed  Google Scholar 

  • Willke T, Vorlop K-D (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56(3–4):289–295

    CAS  PubMed  Google Scholar 

  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75(4):907–914. doi:10.1128/AEM.02268-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJA (2011) Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 11(3):299–306

    CAS  PubMed  Google Scholar 

  • Xiaochen Y, Yubin Z, Kathleen MD, Shulin C (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102. doi:10.1016/j.biortech.2011.02.081

  • Xu G, Liu L, Chen J (2012a) Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microb Cell Fact 11:24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu G, Zou W, Chen X, Xu N, Liu L, Chen J (2012b) Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PLoS ONE 7 (12). doi:10.1371/journal.pone.0052086

  • Xu Q, Li S, Huang H, Wen J (2012c) Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv 30(6):1685–1696. doi:10.1016/j.biotechadv.2012.08.007

    CAS  PubMed  Google Scholar 

  • Xu G, Chen X, Liu L, Jiang L (2013) Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes. Bioresour Technol 148:91–96. doi:10.1016/j.biortech.2013.08.115

    CAS  PubMed  Google Scholar 

  • Yu Z, Du G, Zhou J, Chen J (2012) Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Bioresour Technol 114:597–602. doi:10.1016/j.biortech.2012.03.021

    CAS  PubMed  Google Scholar 

  • Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman J-MA, van Dijken JP, Pronk JT, van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74(9):2766–2777. doi:10.1128/aem.02591-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) L-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77(2):427–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuel Bioprod Bior 6:465–482

    CAS  Google Scholar 

Download references

Acknowledgments

The EU Commission (FP7 project BRIGIT, Contract nr 311935) is acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie F. Gorwa-Grauslund.

Additional information

Anders G. Sandström, Henrik Almqvist, Diogo Portugal-Nunes, Dário Neves, Gunnar Lidén, and Marie F. Gorwa-Grauslund equally contributed to the review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandström, A.G., Almqvist, H., Portugal-Nunes, D. et al. Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock?. Appl Microbiol Biotechnol 98, 7299–7318 (2014). https://doi.org/10.1007/s00253-014-5866-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5866-5

Keywords

Navigation