Skip to main content
Log in

Properties and applications of undecylprodigiosin and other bacterial prodigiosins

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The growing demand to fulfill the needs of present-day medicine in terms of novel effective molecules has lead to reexamining some of the old and known bacterial secondary metabolites. Bacterial prodigiosins (prodiginines) have a long history of being re markable multipurpose compounds, best examined for their anticancer and antimalarial activities. Production of prodigiosin in the most common producer strain Serratia marcescens has been described in great detail. However, few reports have discussed the ecophysiological roles of these molecules in the producing strains, as well as their antibiotic and UV-protective properties. This review describes recent advances in the production process, biosynthesis, properties, and applications of bacterial prodigiosins. Special emphasis is put on undecylprodigiosin which has generally been a less studied member of the prodigiosin family. In addition, it has been suggested that proteins involved in undecylprodigiosin synthesis, RedG and RedH, could be a useful addition to the biocatalytic toolbox being able to mediate regio- and stereoselective oxidative cyclization. Judging by the number of recent references (216 for the 2007–2013 period), it has become clear that undecylprodigiosin and other bacterial prodigiosins still hold surprises in terms of valuable properties and applicative potential to medical and other industrial fields and that they still deserve continuing research curiosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad WA, Ahmad WYW, Zakaria Z, Yusof NZ (2012) Application of bacterial pigments as colorant: the Malaysian perspective. In: Briefs in molecular science. Springer, Heidelberg, pp 57–74

    Google Scholar 

  • Alihosseini F, Ju K-S, Lango J, Hammock BD, Sun G (2008) Antibacterial colorants: characterization of prodiginines and their applications on textile materials. Biotechnol Prog 24:742–747

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alihosseini F, Lango J, Ju KS, Hammock BD, Sun G (2010) Mutation of bacterium Vibrio gazogenes for selective preparation of colorants. Biotechnol Prog 26:352–360

    PubMed Central  PubMed  CAS  Google Scholar 

  • Azambuja P, Feder D, Garcia ES (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107:89–96

    Article  PubMed  CAS  Google Scholar 

  • Basit F, Cristofanon S, Fulda S (2013) Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ 20:1161–1173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bennett JW, Bentley R (2000) Seeing red: the story of prodigiosins. Adv Appl Microbiol 47:1–32

    Article  PubMed  CAS  Google Scholar 

  • Biancardi A, Biver T, Secco F, Mennucci B (2013) An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools. Phys Chem Chem Phys 15:4596–4603

    Article  PubMed  CAS  Google Scholar 

  • Boger DL, Patel M (1988) Total synthesis of prodigiosin, prodigiosene, and desmethoxyprodigiosin: Diels-Alder reactions of heterocyclic azadienes and development of an effective palladium (II)-promoted 2,2′-bipyrrole coupling procedure. J Org Chem 53:1405–1415

    Article  CAS  Google Scholar 

  • Boric M, Danevcic T, Stopar D (2011) Prodigiosin from Vibrio sp. DSM 14379; a new UV-protective pigment. Microb Ecol 62:528–536

    Article  PubMed  CAS  Google Scholar 

  • Boric M, Danevcic T, Stopar D (2012) Viscosity dictates metabolic activity of Vibrio ruber. Front Microbiol 3:1–12

    Article  Google Scholar 

  • Burger SRT, Bennett JW (1985) Droplet enrichment factors of pigmented and nonpigmented Serratia marcescens: possible selective function for prodigiosin. Appl Environ Microbiol 50:487–490

    PubMed Central  PubMed  CAS  Google Scholar 

  • Castro AJ (1967) Antimalarial activity of prodigiosin. Nature 213:903–904

    Article  PubMed  CAS  Google Scholar 

  • Castro AJ, Gale GR, Means GE, Tertzakian G (1967) Antimicrobial properties of pyrrole derivatives. J Med Chem 10:29–32

    Article  PubMed  CAS  Google Scholar 

  • Cerdeno AM, Bibb MJ, Challis GL (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 8:817–829

    Article  PubMed  CAS  Google Scholar 

  • Chang C-C, Chen W-C, Ho S-F, Wu H-S, Wei Y-H (2011) Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 111:501–511

    Article  PubMed  CAS  Google Scholar 

  • Chen W-C, Yu W-J, Chang C-C, Chang J-S, Huang S-H, Chang C-H, Chen S-Y, Chien C-C, Yao C-L, Chen W-M, Wei Y-H (2013) Enhancing production of prodigiosin from Serratia marcescens C3 by statistical experimental design and porous carrier addition strategy. Biochem Eng J 78:93–100

    Article  CAS  Google Scholar 

  • Chiappori AA, Schreeder MT, Moezi MM, Stephenson JJ, Blakely J, Salgia R, Chu QS, Ross HJ, Subramaniam DS, Schnyder J, Berger MS (2012) A phase I trial of pan-Bcl-2 antagonist Obatoclax administered as a 3-h or a 24-h infusion in combination with carboplatin and etoposide in patients with extensive-stage small cell lung cancer. Br J Cancer 106:839–845

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clements-Jewery S (1976) The reversal of glucose repressed prodigiosin production in Serratia marcescens by the cyclic 3′5′-adenosine monophosphate inhibitor theophylline. Experientia 32:421–422

    Article  PubMed  CAS  Google Scholar 

  • Craney A, Ozimok C, Pimentel-Elardo SM, Capretta A, Nodwell JR (2012) Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol 19:1020–1027

    Article  PubMed  CAS  Google Scholar 

  • D’Alessio R, Bargiotti A, Carlini O, Colotta F, Ferrari M, Gnocchi P, Isetta A, Mongelli N, Motta P, Rossi A, Rossi M, Tibolla M, Vanotti E (2000) Synthesis and immunosuppressive activity of novel prodigiosin derivatives. J Med Chem 43:2557–2565

    Article  PubMed  CAS  Google Scholar 

  • D’Aoust JY, Gerber NN (1974) Isolation and purification of prodigiosin from Vibrio psychroerythrus. J Bacteriol 118:756–757

    PubMed Central  PubMed  Google Scholar 

  • de Araújo HWC, Fukushima K, Takaki GMC (2010) Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules 15:6931–6940

    Article  PubMed  CAS  Google Scholar 

  • de Grenu BD, Hernandez PI, Espona M, Quinonero D, Light ME, Torroba T, Perez-Tomas R, Quesada R (2011) Synthetic prodiginine obatoclax (GX15-070) and related analogues: anion binding, transmembrane transport, and cytotoxicity properties. Chem Eur J 17:14074–14083

    Article  CAS  Google Scholar 

  • Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–9320

    Article  PubMed  CAS  Google Scholar 

  • Dufosse L (2009) Pigments, microbial. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic, Oxford, pp 457–471

    Chapter  Google Scholar 

  • Duzhak AB, Panfilova ZI, Duzhak TG, Vasyunina EA, Shternshis MV (2012) Role of prodigiosin and chitinases in antagonistic activity of the bacterium Serratia marcescens against the fungus Didymella applanata. Biochemistry (Moscow) 77:910–916

    Article  CAS  Google Scholar 

  • Elahian F, Moghimi B, Dinmohammadi F, Ghamghami M, Hamidi M, Mirzaei SA (2013) The anticancer agent prodigiosin is not a multidrug resistance protein substrate. DNA Cell Biol 32:90–97

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • El-Bondkly AM, El-Gendy MM, Bassyouni RH (2012) Overproduction and biological activity of prodigiosin-like pigments from recombinant fusant of endophytic marine Streptomyces species. Antonie Van Leeuwenhoek 102:719–734

    Article  PubMed  CAS  Google Scholar 

  • Francisco R, Perez-Tomas R, Gimenez-Bonafe P, Soto-Cerrato V, Gimenez-Xavier P, Ambrosio S (2007) Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur J Pharmacol 572:111–119

    Article  PubMed  CAS  Google Scholar 

  • Frederich JH, Harran PG (2013) Modular access to complex prodiginines: total synthesis of (+)-roseophilin via its 2-azafulvene prototropisomer. J Am Chem Soc 135:3788–3791

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Furstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem 42(31):3582–3603

    Article  CAS  Google Scholar 

  • Furstner A, Grabowski EJ (2001) Studies on DNA cleavage by cytotoxic pyrrole alkaloids reveal the distinctly different behavior of roseophilin and prodigiosin derivatives. ChemBioChem 9:706–709

    Article  Google Scholar 

  • Gao C, Hindra, Mulder D, Yin C, Elliot MA (2012) Crp is a global regulator of antibiotic production in Streptomyces. MBio 3:e00407-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Genes C, Baquero E, Echeverri F, Maya JD, Triana O (2011) Mitochondrial dysfunction in Trypanosoma cruzi: the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease. Parasites Vectors 4:66

    Article  PubMed Central  PubMed  Google Scholar 

  • Gerber NN (1975a) New prodiginine (prodigiosin-like) pigment from Streptomyces. Antimalarial activity of several prodiginines. J Antibiot 28:194–199

    Article  PubMed  CAS  Google Scholar 

  • Gerber NN (1975b) Prodigiosin-like pigments. CRC Crit Rev Microbiol 1975:469–485

    Article  Google Scholar 

  • Gerber NN, Lechevalier MP (1976) Prodiginine (prodigiosin-like) pigments from Streptomyces and other aerobic Actinomycetes. Can J Microbiol 22:658–667

    Article  PubMed  CAS  Google Scholar 

  • Gerber NN, Stahly DP (1975) Prodiginine (prodigiosin-like) pigments from Streptoverticillium rubrireticuli, an organism that causes pink staining of polyvinyl chloride. Appl Microbiol 30:807–810

    PubMed Central  PubMed  CAS  Google Scholar 

  • Giri A, Anandkumar N, Muthukumaran G, Pennathur G (2004) A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol 4:1–10

    Article  Google Scholar 

  • Guryanov ID, Karamova NS, Yusupova DV, Gnezdilov OI, Koshkarova LA (2013) Bacterial pigment prodigiosin and its genotoxic effect. Russ J Bioorg Chem 39:106–111

    Article  CAS  Google Scholar 

  • Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Haddix PL, Jones S, Patel P, Burnham S, Knights K, Powell JN, LaForm A (2008) Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens. J Bacteriol 190:7453–7463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Han SB, Kim HM, Kim YH, Lee CW, Jang ES, Son KH, Kim SU, Kim YK (1998) T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens. Int J Immunopharmacol 20:1–13

    Article  PubMed  CAS  Google Scholar 

  • Harris A, Williamson N, Slater H, Cox A, Abbasi S, Foulds I, Simonsen H, Leeper F, Salmond G (2004) The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species and strain-dependent genome context variation. Microbiology 150:3547–3560

    Article  PubMed  CAS  Google Scholar 

  • Haynes SW, Sydor PK, Stanley AE, Song L, Challis GL (2008) Role and substrate specificity of the Streptomyces coelicolor RedH enzyme in undecylprodiginine biosynthesis. Chem Commun (Camb) 1865–1867

  • Hejazi A, Falkiner FR (1997) Serratia marcescens. J Med Microbiol 46:903–912

    Article  PubMed  CAS  Google Scholar 

  • Ho T-F, Ma C-J, Lu C-H, Tsai Y-T, Wei Y-H, Chang J-S, Lai J-K, Cheuh P-J, Yeh C-T, Tang P-C, Chang J, Ko J-L, Liu F-S, Yen H, Chang C-C (2007) Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53. Toxicol Appl Pharmacol 225:318–328

    Article  PubMed  CAS  Google Scholar 

  • Hobbs G, Frazer C, Gardner D, Flett F, Oliver S (1990) Pigmented antibiotic production by Streptomyces coelicolor A3(2): kinetics and the influence of nutrients. J Gen Microbiol 136:2291–2296

    Article  CAS  Google Scholar 

  • Hood DW, Heidstra R, Swoboda UK, Hodgson DA (1992) Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism—a review. Gene 115:5–12

    Article  PubMed  CAS  Google Scholar 

  • Hosseini A, Espona-Fiedler M, Soto-Cerrato V, Quesada R, Perez-Tomas R, Guallar V (2013) Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members. PLoS One 8:e57562

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Isaka M, Jaturapat A, Kramyu J, Tanticharoen M, Thebtaranonth Y (2002) Potent in vitro antimalarial activity of metacycloprodigiosin isolated from Streptomyces spectabilis BCC 4785. Antimicrob Agents Chemother 46:1112–1113

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jeong H, Yim JH, Lee C, Choi SH, Park YK, Yoon SH, Hur CG, Kang HY, Kim D, Lee HH, Park KH, Park SH, Park HS, Lee HK, Oh TK, Kim JF (2005) Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res 33:7066–7073

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jeong HY, Kim JHF, Lee CH, Lee HK, Lee YK, Oh TK, Park S-H, Park YK, Yim JH (2007) Algicidal agent containing prodigiosin and prodigiosin biosynthetic gene cluster. World Intellectual Property Organization Patent, WO/2007/073011

  • Jones JDG, Grady KL, Suslow TV, Bedbrook JR (1986) Isolation and characterization of genes encoding two chitinase enzymes from Serratia marcescens. EMBO J 5:467–473

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kalivoda EJ, Stella NA, Aston MA, Fender JE, Thompson PP, Kowalski RP, Shanks RM (2010) Cyclic AMP negatively regulates prodigiosin production by Serratia marcescens. Res Microbiol 161:158–167

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kancharla P, Reynolds KA (2013) Synthesis of 2,2′-bipyrrole-5-carboxaldehydes and their application in the synthesis of B-ring functionalized prodiginines and tambjamines. Tetrahedron 69:8375–8385

    Article  CAS  Google Scholar 

  • Kancharla P, Smilkstein M, Kelly JX, Salem SM, Alhamadsheh M, Haynes SW, Challis GL, Reynolds KA (2011) Antimalarial activity of natural and synthetic prodiginines. J Med Chem Res 54:5296–5306

    Article  CAS  Google Scholar 

  • Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70:220–233

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Sakurai F, Hayakawa Y (2008) A prodigiosin from the roseophilin producer Streptomyces griseoviridis. J Nat Prod 71:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Lee JS, Park YK, Kim JF, Jeong H, Oh TK, Kim BS, Lee CH (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J Appl Microbiol 102:937–944

    PubMed  CAS  Google Scholar 

  • Kim D, Kim JF, Yim JH, Kwon SK, Lee CH, Lee HK (2008a) Red to red—the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol 18:1621–1629

    PubMed  CAS  Google Scholar 

  • Kim S, Lee H, Lee Y, Yim J (2008b) Mutant selection of Hahella chejuensis KCTC 2396 and statistical optimization of medium components for prodigiosin yield-up. J Microbiol 46:183–188

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Ichikawa Y (1989) A protein associated with prodigiosin formation in Serratia marcescens. Microbiol Immunol 33:257–263

    Article  PubMed  CAS  Google Scholar 

  • Konno H, Matsuya H, Okamoto M, Sato T, Tanaka Y, Yokoyama K, Kataoka T, Nagai R, Wasserman HH, Ohkuma S (1998) Prodigiosins uncouple mitochondrial and bacterial F-ATPases: evidence for their H+/Cl- symport activity. J Biochem 124:547–556

    Article  PubMed  CAS  Google Scholar 

  • Krishna GJ, Basheer SM, Elyas KK, Chandrasekaran M (2011) Prodigiosin from marine bacterium: production, characterization and application as dye in textile industry. Int J Biotechnol Biochem 7:155–191

    Google Scholar 

  • Krishna J, Jacob A, Kurian P, Elyas K, Chandrasekaran M (2013) Marine bacterial prodigiosin as dye for rubber latex, polymethyl methacrylate sheets and paper. Afr J Biotechnol 12:2266–2269

    CAS  Google Scholar 

  • Lazaro JE, Nitcheu J, Predicala RZ, Mangalindan GC, Nesslany F, Marzin D, Concepcion GP, Diquet B (2002) Heptyl prodigiosin, a bacterial metabolite, is antimalarial in vivo and non-mutagenic in vitro. J Nat Toxins 11:367–377

    PubMed  CAS  Google Scholar 

  • Lee JS, Kim Y-S, Park S, Kim J, Kang S-J, Lee M-H, Ryu S, Choi JM, Oh T-K, Yoon J-H (2011) Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Appl Environ Microbiol 77:4967–4973

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu R, Cui C-B, Duan L, Gu Q-Q, Zhu W-M (2005) Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov. Arch Pharm Res 28:1341–1344

    Article  PubMed  CAS  Google Scholar 

  • Liu B-Y, Wei D-Z, Lu S-R, Zhou W-Y, Shen Y-l XR, Wang J-H (2010) Algicidal activity of prodigiosin against harmful algae. China Environ Sci 30:477–482

    Google Scholar 

  • Liu P, Wang YY, Qi X, Gu Q, Geng M, Li J (2013a) Undecylprodigiosin induced apoptosis in p388 cancer cells is associated with its binding to ribosome. PLoS One 8:e65381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu X, Wang Y, Sun S, Zhu C, Xu W, Park Y, Zhou H (2013b) Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles. Prep Biochem Biotechnol 43:271–284

    Article  PubMed  CAS  Google Scholar 

  • Llagostera E, Soto-Cerrato V, Montaner B, Perez-Tomas R (2003) Prodigiosin induces apoptosis by acting on mitochondria in human lung cancer cells. Ann N Y Acad Sci 1010:178–181

    Article  PubMed  CAS  Google Scholar 

  • Lu CH, Lin SC, Yang SY, Pan MY, Lin YW, Hsu CY, Wei YH, Chang JS, Chang CC (2012) Prodigiosin-induced cytotoxicity involves RAD51 down-regulation through the JNK and p38 MAPK pathways in human breast carcinoma cell lines. Toxicol Lett 212:83–89

    Article  PubMed  CAS  Google Scholar 

  • Luti K, Mavituna F (2011a) Streptomyces coelicolor increases the production of undecylprodigiosin when interacted with Bacillus subtilis. Biotechnol Lett 33:113–118

    Article  PubMed  CAS  Google Scholar 

  • Luti KJK, Mavituna F (2011b) Elicitation of Streptomyces coelicolor with dead cells of Bacillus subtilis and Staphylococcus aureus in a bioreactor increases production of undecylprodigiosin. Appl Microbiol Biotechnol 90:461–466

    Article  PubMed  CAS  Google Scholar 

  • Magae J, Miller MW, Nagai K, Shearer GM (1996) Effect of metacycloprodigiosin, an inhibitor of killer T cells on murine skin and heart transplants. J Antibiot (Tokyo) 49:86–90

    Article  CAS  Google Scholar 

  • Mahajan DM, Masand VH, Patil KN, Hadda TB, Jawarkar RD, Thakur SD, Rastija V (2012) CoMSIA and POM analyses of anti-malarial activity of synthetic prodiginines. Bioorg Med Chem Lett 22:4827–4835

    Article  PubMed  CAS  Google Scholar 

  • Mahajan DT, Masand VH, Patil KN, Hadda TB, Rastija V (2013) Integrating GUSAR and QSAR analyses for antimalarial activity of synthetic prodiginines against multi drug resistant strain. Med Chem Res 22:2284–2292

    Article  CAS  Google Scholar 

  • Mahlen SD (2011) Serratia infections: from military experiments to current practice. Clin Microbiol Rev 24:755–791

    Article  PubMed Central  PubMed  Google Scholar 

  • Malpartida F, Niemi J, Navarrete R, Hopwood DA (1990) Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93:91–99

    Article  PubMed  CAS  Google Scholar 

  • Mao X-M, Sun Z-H, Liang B-R, Wang Z-B, Feng W-H, Huang F-L, Li Y-Q (2013) Positive feedback regulation of stgR expression for secondary metabolism in Streptomyces coelicolor. J Bacteriol 195:2072–2078

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsuyama T, Murakami T, Fujita M, Fujita S, Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. J Gen Microbiol 132:865–875

    CAS  Google Scholar 

  • McRary WL, Beaver EL, Noble ER (1953) In vitro effects of prodigiosin and other antibiotics on Trypanosoma cruzi. Exp Parasitol 2:125–128

    Article  Google Scholar 

  • Melvin MS, Ferguson DC, Lindquist N, Manderville RA (1999) DNA binding by 4-methoxypyrrolic natural products. Preference for intercalation at AT sites by tambjamine E and prodigiosin. J Org Chem 64:6861–6869

    Article  PubMed  CAS  Google Scholar 

  • Melvin MS, Tomlinson JT, Saluta GR, Kucera GL, Lindquist N, Manderville RA (2000) Double-strand DNA cleavage by copper-prodigiosin. J Am Chem Soc 122:6333–6334

    Article  CAS  Google Scholar 

  • Meschke H, Walter S, Schrempf H (2012) Characterization and localization of prodiginines from Streptomyces lividans suppressing Verticillium dahliae in the absence or presence of Arabidopsis thaliana. Environ Microbiol 14:940–952

    Article  PubMed  CAS  Google Scholar 

  • Mikonranta L, Friman VP, Laakso J (2012) Life history trade-offs and relaxed selection can decrease bacterial virulence in environmental reservoirs. PLoS One 7:e43801

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mo S, Kim B, Reynolds K (2005) Production of branched-chain alkylprodiginines in S. coelicolor by replacement of the 3-ketoacyl ACP synthase III initiation enzyme, RedP. Chem Biol 12:191–200

    Article  PubMed  CAS  Google Scholar 

  • Mo S, Sydor PK, Corre C, Alhamadsheh MM, Stanley AE, Haynes SW, Song L, Reynolds KA, Challis GL (2008) Elucidation of the Streptomyces coelicolor pathway to 2-undecylpyrrole, a key intermediate in undecylprodiginine and streptorubin B biosynthesis. Chem Biol 15:137–148

    Article  PubMed  CAS  Google Scholar 

  • Mo SJ, Kim J-H, Oh C-H (2013) Different effect of acidic pH shock on the prodiginine production in Streptomyces coelicolor M511 and SJM1 mutant. J Microbiol Biotechnol 23:1454–1459

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Horneck G, Facius R, Stackebrandt E (2005) Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol Ecol 51:231–236

    Article  PubMed  CAS  Google Scholar 

  • Monge M, Vilaseca M, Soto-Cerrato V, Montaner B, Giralt E, Perez-Tomas R (2007) Proteomic analysis of prodigiosin-induced apoptosis in a breast cancer mitoxantrone-resistant (MCF-7 MR) cell line. Investig New Drugs 25:21–29

    Article  CAS  Google Scholar 

  • Monreal J, Reese ET (1969) The chitinase of Serratia marcescens. Can J Microbiol 15:689–696

    Article  PubMed  CAS  Google Scholar 

  • Montaner B, Perez-Tomas R (2001) Prodigiosin-induced apoptosis in human colon cancer cells. Life Sci 68:2025–2036

    Article  PubMed  CAS  Google Scholar 

  • Montaner B, Perez-Tomas R (2002) Prodigiosin induces caspase-9 and caspase-8 activation and cytochrome c release in Jurkat T cells. Ann N Y Acad Sci 973:246–249

    Article  PubMed  CAS  Google Scholar 

  • Montaner B, Pérez-Tomás R (2003) The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets 3:57–65

    Article  PubMed  CAS  Google Scholar 

  • Montaner B, Castillo-Avila W, Martinell M, Ollinger R, Aymami J, Giralt E, Perez-Tomas R (2005) DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicol Sci 85:870–879

    Article  PubMed  CAS  Google Scholar 

  • Moraes CS, Seabra SH, Castro DP, Brazil RP, de Souza W, Garcia ES, Azambuja P (2008) Leishmania (Leishmania) chagasi interactions with Serratia marcescens: ultrastructural studies, lysis and carbohydrate effects. Exp Parasitol 118:561–568

    Article  PubMed  CAS  Google Scholar 

  • Mortellaro A, Songia S, Gnocchi P, Ferrari M, Fornasiero C, D’Alessio R, Isetta A, Colotta F, Golay J (1999) New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J Immunol 162:7102–7109

    PubMed  CAS  Google Scholar 

  • Nakamura A, Nagai K, Ando K, Tamura G (1986) Selective suppression by prodigiosin of the mitogenic response of murine splenocytes. J Antibiot (Tokyo) 39:1155–1159

    Article  CAS  Google Scholar 

  • Nakashima T, Kato Y, Yamaguchi K, Oda T (2005) Evaluation of the anti-Trichophyton activity of a prodigiosin analogue produced by gamma-proteobacterium, using stratum corneum epidermis of the Yucatan micropig. J Infect Chemother 11:123–128

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Miyazaki Y, Matsuyama Y, Muraoka W, Yamaguchi K, Oda T (2006) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium. Appl Microbiol Biotechnol 73:684–690

    Article  PubMed  CAS  Google Scholar 

  • Narva KE, Fietelson JS (1990) Nucleotide sequence and transcriptional analysis of the redD locus in Streptomyces coelicolor A3(2). J Bacteriol 172:326–333

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR, Goulet D, Viallet J, Belec L, Billot X, Acoca S, Purisima E, Wiegmans A, Cluse L, Johnstone RW, Beauparlant P, Shore GC (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci U S A 104:19512–19517

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen O, Sletta H, Alam M, Merlo M, Moore J, Omara W, Morrissey ER, Juarez-Hermosillo MA, Rodríguez-García A, Nentwich M, Thomas L, Iqbal M, Legaie R, Gaze W, Challis G, Jansen R, Dijkhuizen L, Rand D, Wild D, Bonin M, Reuther J, Wohlleben W, Smith M, Burroughs N, Martín J, Hodgson D, Takano E, Breitling R, Ellingsen T, Wellington E (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:10–19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nigam P, Pandey A, Babitha S (2009) Microbial pigments. In: Biotechnology for agro-industrial residues utilisation. Springer, Netherlands, pp 147–162

    Chapter  Google Scholar 

  • Pan MY, Shen YC, Lu CH, Yang SY, Ho TF, Peng YT, Chang CC (2012) Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines. Toxicol Appl Pharmacol 265:325–334

    Article  PubMed  CAS  Google Scholar 

  • Papireddy K, Smilkstein M, Kelly JX, Salem SM, Alhamadsheh M, Haynes SW, Challis GL, Reynolds KA (2011) Antimalarial activity of natural and synthetic prodiginines. J Med Chem 54:5296–5306

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Park G, Tomlinson JT, Melvin MS, Wright MW, Day CS, Manderville RA (2003) Zinc and copper complexes of prodigiosin: implications for copper-mediated double-strand DNA cleavage. Org Lett 5:113–116

    Article  PubMed  CAS  Google Scholar 

  • Park H, Lee S-G, Kim T-K, Han S-J, Yim J-H (2012) Selection of extraction solvent and temperature effect on stability of the algicidal agent prodigiosin. Biotechnol Bioproc Eng 17:1232–1237

    Article  CAS  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2012) Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res 109:1179–1187

    Article  Google Scholar 

  • Perez-Tomas R, Vinas M (2010) New insights on the antitumoral properties of prodiginines. Curr Med Chem 17:2222–2231

    Article  PubMed  CAS  Google Scholar 

  • Perez-Tomas R, Montaner B, Llagostera E, Soto-Cerrato V (2003) The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol 66:1447–1452

    Article  PubMed  CAS  Google Scholar 

  • Poulter S, Carlton TM, Su X, Spring DR, Salmond GP (2010) Engineering of new prodigiosin-based biosensors of Serratia for facile detection of short-chain N-acyl homoserine lactone quorum-sensing molecules. Environ Microbiol Rep 2:322–328

    Article  PubMed  CAS  Google Scholar 

  • Priya KA, Satheesh S, Ashokkumar B, Varalakshmi P, Selvakumar G, Sivakumar N (2013) Antifouling activity of prodigiosin from estuarine isolate of Serratia marcescens CMST 07. In: Velu RK (ed) Microbiological research in agroecosystem management, vol XVI. Springer, New Delhi

    Google Scholar 

  • Rajesh T, Song E, Kim JN, Lee BR, Kim EJ, Park SH, Kim YG, Yoo D, Park HY, Choi YH, Kim BG, Yang YH (2012) Inactivation of phosphomannose isomerase gene abolishes sporulation and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 93:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Ryazantseva IN, Saakov VS, Andreyeva IN, Ogorodnikova TI, Zuev YF (2012) Response of pigmented Serratia marcescens to the illumination. J Photochem Photobiol B 106:18–23

    Article  PubMed  CAS  Google Scholar 

  • Samrot A, Chandana K, Senthilkumar P, Narendrakumar G (2011) Optimization of prodigiosin production by Serratia marcescens SU-10 and evaluation of its bioactivity. Int Res J Biotechnol 2:128–133

    Google Scholar 

  • Sanchez S, Chavez A, Forero A, Garcia-Huante Y, Romero A, Sanchez M, Rocha D, Sanchez B, Avalos M, Guzman-Trampe S, Rodriguez-Sanoja R, Langley E, Ruiz B (2010) Carbon source regulation of antibiotic production. J Antibiot (Tokyo) 63:442–459

    Article  CAS  Google Scholar 

  • Sato T, Konno H, Tanaka Y, Kataoka T, Nagai K, Wasserman HH, Ohkuma S (1998) Prodigiosins as a new group of H+/Cl- symporters that uncouple proton translocators. J Biol Chem 273:21455–21462

    Article  PubMed  CAS  Google Scholar 

  • Schild D, Wiese C (2010) Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Nucleic Acids Res 38:1061–1070

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schloss PD, Allen HK, Klimowicz AK, Mlot C, Gross JA, Savengsuksa S, McEllin J, Clardy J, Ruess RW, Handelsman J (2010) Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol 29:533–541

    Article  PubMed  CAS  Google Scholar 

  • Sertan-de Guzman AA, Predicala RZ, Bernardo EB, Neilan BA, Elardo SP, Mangalindan GC, Tasdemir D, Ireland CM, Barraquio WL, Concepcion GP (2007) Pseudovibrio denitrificans strain Z143-1, a heptylprodigiosin-producing bacterium isolated from a Philippine tunicate. FEMS Microbiol Lett 277:188–196

    Article  PubMed  CAS  Google Scholar 

  • Sevcikova B, Kormanec J (2004) Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch Microbiol 181:384–389

    Article  PubMed  CAS  Google Scholar 

  • Shahid M, Ul-Islam S, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  • Shahitha S, Poornima K (2012) Enhanced production of prodigiosin production in Serratia marcescens. J Appl Pharm Sci 2:138–140

    Google Scholar 

  • Shanks RMQ, Lahr RM, Stella NA, Arena KE, Brothers KM, Kwak DH, Liu XY, Kalivoda EJ (2013) A Serratia marcescens PigP homolog controls prodigiosin biosynthesis, swarming motility and hemolysis and is regulated by cAMP-CRP and HexS. PLoS One 8:e57634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Science 334:986–990

    Article  PubMed  CAS  Google Scholar 

  • Shen JJ, Yang Y (2013) Kinetics and thermodynamics studies of prodigiosin dyeing on polyester. Adv Mater Res 779–780:156–160

    Article  CAS  Google Scholar 

  • Singh B, Vishwakarma RA, Bharate SB (2013) QSAR and pharmacophore modeling of natural and synthetic antimalarial prodiginines. Curr Comput Aided Drug Des 9:350–359

    Article  PubMed  CAS  Google Scholar 

  • Siva R, Subha K, Bhakta D, Ghosh A, Babu S (2012) Characterization and enhanced production of prodigiosin from the spoiled coconut. Appl Biochem Biotechnol 166:187–196

    Article  PubMed  CAS  Google Scholar 

  • Slater H, Crow M, Everson L, Salmond GP (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320

    Article  PubMed  CAS  Google Scholar 

  • Soliev AB, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evid Based Complement Alternat Med 2011:670349

    Article  PubMed Central  PubMed  Google Scholar 

  • Someya N, Nakajima A, Hirayae K, Hibi A, Akutsu K (2001) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain B2 against gray mold pathogen, Botrytis cinerea. J Gen Plant Pathol 67:312–317

    Article  CAS  Google Scholar 

  • Songia S, Mortellaro A, Taverna S, Fornasiero C, Scheiber EA, Erba E, Colotta F, Mantovani A, Isetta AM, Golay J (1997) Characterization of the new immunosuppressive drug undecylprodigiosin in human lymphocytes: retinoblastoma protein, cyclin-dependent kinase-2, and cyclin-dependent kinase-4 as molecular targets. J Immunol 158:3987–3995

    PubMed  CAS  Google Scholar 

  • Soto-Cerrato V, Llagostera E, Montaner B, Scheffer GL, Perez-Tomas R (2004) Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochem Pharmacol 68:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Soto-Cerrato V, Vinals F, Lambert JR, Kelly JA, Perez-Tomas R (2007) Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3beta activity in human breast cancer cells. Mol Cancer Ther 6:362–369

    Article  PubMed  CAS  Google Scholar 

  • Stafsnes MH, Josefsen KD, Kildahl-Andersen G, Valla S, Ellingsen TE, Bruheim P (2010) Isolation and characterization of marine pigmented bacteria from Norwegian coastal waters and screening for carotenoids with UVA-blue light absorbing properties. J Microbiol 48:16–23

    Article  PubMed  CAS  Google Scholar 

  • Stankovic N, Radulovic V, Petkovic M, Vuckovic I, Jadranin M, Vasiljevic B, Nikodinovic-Runic J (2012) Streptomyces sp. JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties. Appl Microbiol Biotechnol 96:1217–1231

    Article  PubMed  CAS  Google Scholar 

  • Stanley AE, Walton LJ, Zerikly MK, Corre C, Challis GL (2006) Elucidation of the Streptomyces coelicolor pathway to 4-methoxy-2,2′-bipyrrole-5-carboxaldehyde, an intermediate in prodiginine biosynthesis. Chem Commun 38:3981–3983

    Article  CAS  Google Scholar 

  • Staric N, Danevcic T, Stopar D (2010) Vibrio sp. DSM 14379 pigment production—a competitive advantage in the environment. Microb Ecol 60:592–598

    Article  PubMed  CAS  Google Scholar 

  • Stepkowski SM, Nagy ZS, Wang ME, Behbod F, Erwin-Cohen R, Kahan BD, Kirken RA (2001) PNU156804 inhibits Jak3 tyrosine kinase and rat heart allograft rejection. Transplant Proc 33:3272–3273

    Article  PubMed  CAS  Google Scholar 

  • Su WT, Tsou TY, Liu HL (2011) Response surface optimization of microbial prodigiosin production from Serratia marcescens. J Taiwan Inst Chem Eng 42:217–222

    Article  CAS  Google Scholar 

  • Swiatek MA, Tenconi E, Rigali S, van Wezel GP (2012a) Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol 194:1136–1144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Swiatek MA, Urem M, Tenconi E, Rigali S, van Wezel GP (2012b) Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered 3:280–285

    Article  PubMed Central  PubMed  Google Scholar 

  • Swiatek MA, Gubbens J, Bucca G, Song E, Yung-Hun Yang Y-H, Laing E, Kim B-G, Smith CP, van Wezel GP (2013) The ROK family regulator Rok7B7 pleiotropically affects xylose utilization, carbon catabolite repression, and antibiotic production in Streptomyces coelicolor. J Bacteriol 195:1236–1248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sydor PK, Challis GL (2012) Oxidative tailoring reactions catalyzed by nonheme iron-dependent enzymes: Streptorubin B biosynthesis as an example. In: Hopwood DA (ed) Methods in enzymology (natural product biosynthesis by microorganisms and plants, Pt B), vol 516. pp 195–218

  • Sydor PK, Barry SM, Odulate OM, Barona-Gomez F, Haynes SW, Corre C, Song L, Challis GL (2011) Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes. Nat Chem 3:388–392

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szydek LD (1985) Influence of Serratia marcescens pigmentation on cell concentrations in aerosols produced by bursting bubbles. Appl Environ Microbiol 49:173–178

    Google Scholar 

  • Tanikawa T, Nakagawa Y, Matsuyama T (2006) Transcriptional downregulator hexS controlling prodigiosin and serrawettin W1 biosynthesis in Serratia marcescens. Microbiol Immunol 50:587–596

    Article  PubMed  CAS  Google Scholar 

  • Tenconi E, Guichard P, Motte P, Matagne A, Rigali S (2013) Use of red autofluorescence for monitoring prodiginine biosynthesis. J Microbiol Methods 93:138–142

    Article  PubMed  CAS  Google Scholar 

  • Thomas L, Hodgson DA, Wentzel A, Nieselt K, Ellingsen TE, Moore J, Morrissey ER, Legaie R, Wohlleben W, Rodriguez-Garcia A, Martin JF, Burroughs NJ, Wellington EM, Smith MC (2012) Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol Cell Proteomics 11(2):M111

    Article  CAS  Google Scholar 

  • Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GPC (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556

    Article  PubMed  CAS  Google Scholar 

  • Tsao SW, Rudd BA, He XG, Chag CJ, Floss HG (1985) Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J Antibiot (Tokyo) 38:128–131

    Article  CAS  Google Scholar 

  • Tsuji RF, Yamamoto M, Nakamura A, Kataoka T, Magae J, Nagai K, Yamasaki M (1990) Selective immunosuppression of prodigiosin 25-C and FK506 in the murine immune system. J Antibiot (Tokyo) 43:1293–1301

    Article  CAS  Google Scholar 

  • Urtishak KA, Edwards AY, Wang LS, Hudome A, Robinson BW, Barrett JS, Cao K, Cory L, Moore JS, Bantly AD, Yu QC, Chen IM, Atlas SR, Willman CL, Kundu M, Carroll AJ, Heerema NA, Devidas M, Hilden JM, Dreyer ZE, Hunger SP, Reaman GH, Felix CA (2013) Potent obatoclax cytotoxicity and activation of triple death mode killing across infant acute lymphoblastic leukemia. Blood 121:2689–2703

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229

    Article  PubMed  CAS  Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079

    Article  CAS  Google Scholar 

  • Waldvogel E, Herbig A, Battke F, Amin R, Nentwich M, Nieselt K, Ellingsen TE, Wentzel A, Hodgson DA, Wohlleben W, Mast Y (2011) The PII protein GlnK is a pleiotropic regulator for morphological differentiation and secondary metabolism in Streptomyces coelicolor. Appl Microbiol Biotechnol 92:1219–1236

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Kirken R, Behbod F, Erwin-Cohen R, Stepkowski SM, Kahan BD (2001) Inhibition of Jak3 tyrosine kinase by PNU156804 blocks rat heart allograft rejection. Transplant Proc 33:201

    Article  PubMed  Google Scholar 

  • Wang Y, Nakajima A, Hosokawa K, Soliev AB, Osaka I, Arakawa R, Enomoto K (2012) Cytotoxic prodigiosin family pigments from Pseudoalteromonas sp. 1020R isolated from the Pacific coast of Japan. Biosci Biotechnol Biochem 76:1229–1232

    Article  PubMed  CAS  Google Scholar 

  • Wei Y-H, Chen W-C (2005) Enhanced production of prodigiosin-like pigment from Serratia marcescens SM∆R by medium improvement and oil-supplementation strategies. J Biosci Bioeng 99:616–622

    Article  PubMed  CAS  Google Scholar 

  • Wei Y-H, Yu W-J, Chen W-C (2005) Enhanced undecylprodigiosin production from Serratia marcescens SS-1 by medium formulation and amino-acid supplementation. J Biosci Bioeng 100:466–471

    Article  PubMed  CAS  Google Scholar 

  • Whicher JR, Florova G, Sydor PK, Singh R, Alhamadsheh M, Challis GL, Reynolds KA, Smith JL (2011) Structure and function of the RedJ protein, a thioesterase from the prodiginine biosynthetic pathway in Streptomyces coelicolor. J Biol Chem 286:22558–22569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • White J, Bibb M (1997) bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(A2) involves a pathway-specific regulatory cascade. J Bacteriol 197:627–633

    Google Scholar 

  • Wilf NM, Salmond GP (2012) The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006. Microbiology 158:648–658

    Article  PubMed  CAS  Google Scholar 

  • Williams RP, Hearn WP (1967) Prodigiosin. In: Gottlieb D, Shaw PD (eds) Antibiotics, vol. 2. Springer, New York, pp 410–432

    Google Scholar 

  • Williams RP, Green JA, Rappo-Port DA (1956) Studies on pigmentation of Serratia marcescens. I. Spectral and paper chromatographic properties of prodigiosin. J Bacteriol 71:115–120

    PubMed Central  PubMed  CAS  Google Scholar 

  • Williamson N, Simonsen H, Ahmed R, Goldet G, Slater H, Woodley L, Leeper F, Salmond G (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amylpyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56:971–989

    Article  PubMed  CAS  Google Scholar 

  • Williamson NR, Fineran PC, Leeper FJ, Salmond GPC (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4:887–899

    Article  PubMed  CAS  Google Scholar 

  • Williamson NR, Fineran PC, Gristwood T, Chawrai SR, Leeper FJ, Salmond GPC (2007) Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol 2:605–618

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto D, Kiyozuka Y, Uemura Y, Yamamoto C, Takemoto H, Hirata H, Tanaka K, Hioki K, Tsubura A (2000a) Cycloprodigiosin hydrochloride, a H+/Cl- symporter, induces apoptosis in human breast cancer cell lines. J Cancer Res Clin Oncol 126:191–197

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto D, Uemura Y, Tanaka K, Nakai K, Yamamoto C, Takemoto H, Kamata K, Hirata H, Hioki K (2000b) Cycloprodigiosin hydrochloride, H(+)/CL(-) symporter, induces apoptosis and differentiation in HL-60 cells. Int J Cancer 88:121–128

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto D, Tanaka K, Nakai K, Baden T, Inoue K, Yamamoto C, Takemoto H, Kamato K, Hirata H, Morikawa S, Inubushi T, Hioki K (2002) Synergistic effects induced by cycloprodigiosin hydrochloride and epirubicin on human breast cancer cells. Breast Cancer Res Treat 72:1–10

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki G, Nishimura S, Ishida A, Kanagasabhapathy M, Zhou X, Nagata S, Morohoshi T, Ikeda T (2006) Effect of salt stress on pigment production of Serratia rubidaea N-1: a potential indicator strain for screening quorum sensing inhibitors from marine microbes. J Gen Appl Microbiol 52:113–117

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Wei HY, Li XQ, Li YH, Li XB, Yin LH, Pu YP (2013) Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse Microcystis aeruginosa. Biomed Environ Sci 26:148–154

    PubMed  CAS  Google Scholar 

  • Yu Z, Zhu H, Dang F, Zhang W, Qin Z, Yang S, Tan H, Lu Y, Jiang W (2012) Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol 85:535–556

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, He CC, Chu QH (2010) Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Lett Appl Microbiol 52:269–274

    Google Scholar 

Download references

Acknowledgement

The authors were funded by the Ministry of Education, Science and Technological Development of Serbia Project No. 173048. We thank Dr. William Casey for the helpful suggestions during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmina Nikodinovic-Runic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stankovic, N., Senerovic, L., Ilic-Tomic, T. et al. Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl Microbiol Biotechnol 98, 3841–3858 (2014). https://doi.org/10.1007/s00253-014-5590-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5590-1

Keywords

Navigation