Skip to main content

Advertisement

Log in

Streptavidin–biotin technology: improvements and innovations in chemical and biological applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptavidin and its homologs (together referred to as streptavidin) are widely used in molecular science owing to their highly selective and stable interaction with biotin. Other factors also contribute to the popularity of the streptavidin–biotin system, including the stability of the protein and various chemical and enzymatic biotinylation methods available for use with different experimental designs. The technology has enjoyed a renaissance of a sort in recent years, as new streptavidin variants are engineered to complement native proteins and novel methods of introducing selective biotinylation are developed for in vitro and in vivo applications. There have been notable developments in the areas of catalysis, cell biology, and proteomics in addition to continued applications in the more established areas of detection, labeling and drug delivery. This review summarizes recent advances in streptavidin engineering and new applications based on the streptavidin–biotin interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028

    PubMed  Google Scholar 

  • Aslan FM, Yu Y, Vajda S, Mohr SC, Cantor CR (2007) Engineering a novel, stable dimeric streptavidin with lower isoelectric point. J Biotechnol 128(2):213–225

    PubMed  CAS  Google Scholar 

  • Barry MA, Campos SK, Ghosh D, Adams KE, Mok H, Mercier GT, Parrott MB (2003) Biotinylated gene therapy vectors. Expert Opin Biol Ther 3(6):925–940

    PubMed  CAS  Google Scholar 

  • Bayer EA, Wilchek M (1980) The use of the avidin–biotin complex as a tool in molecular biology. Methods Biochem Anal 26:1–45

    PubMed  CAS  Google Scholar 

  • Bing T, Yang X, Mei H, Cao Z, Shangguan D (2010) Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Bioorg Med Chem 18(5):1798–1805

    PubMed  CAS  Google Scholar 

  • Chauhan A, Tikoo A, Kapur AK, Singh M (2007) The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release 117(2):148–162

    PubMed  CAS  Google Scholar 

  • Chen I, Howarth M, Lin W, Ting AY (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2(2):99–104

    PubMed  CAS  Google Scholar 

  • Chen MH, Soda Y, Izawa K, Kobayashi S, Tani K, Maruyama K, Tojo A, Asano S (2013) A versatile drug delivery system using streptavidin-tagged pegylated liposomes and biotinylated biomaterials. Int J Pharm 24(13):00540–00541

    Google Scholar 

  • Chilkoti A, Stayton PS (1995) Molecular-origins of the slow streptavidin–biotin dissociation kinetics. J Am Chem Soc 117(43):10622–10628

    CAS  Google Scholar 

  • Chilkoti A, Schwartz BL, Smith RD, Long CJ, Stayton PS (1995) Engineered chimeric streptavidin tetramers as novel tools for bioseparations and drug delivery. Biotechnology (NY) 13(11):1198–1204

    CAS  Google Scholar 

  • Chivers CE, Crozat E, Chu C, Moy VT, Sherratt DJ, Howarth M (2010) A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat Methods 7(5):391–393

    PubMed  CAS  Google Scholar 

  • Collot J, Gradinaru J, Humbert N, Skander M, Zocchi A, Ward TR (2003) Artificial metalloenzymes for enantioselective catalysis based on biotin–avidin. J Am Chem Soc 125(30):9030–9031

    PubMed  CAS  Google Scholar 

  • de Boer E, Rodriguez P, Bonte E, Krijgsveld J, Katsantoni E, Heck A, Grosveld F, Strouboulis J (2003) Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100(13):7480–7485

    PubMed  Google Scholar 

  • Demonte D, Drake EJ, Lim KH, Gulick AM, Park S (2013) Structure-based engineering of streptavidin monomer with a reduced biotin dissociation rate. Proteins 81(9):1621–1633

    Google Scholar 

  • Emerman AB, Zhang ZR, Chakrabarti O, Hegde RS (2010) Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo. Mol Biol Cell 21(24):4325–4337

    PubMed  CAS  Google Scholar 

  • Fahrer J, Schweitzer B, Fiedler K, Langer T, Gierschik P, Barth H (2013) C2-streptavidin mediates the delivery of biotin-conjugated tumor suppressor protein p53 into tumor cells. Bioconjug Chem 24(23506195):595–603

    PubMed  CAS  Google Scholar 

  • Fernandez-Suarez M, Chen TS, Ting AY (2008) Protein–protein interaction detection in vitro and in cells by proximity biotinylation. J Am Chem Soc 130(29):9251–9253

    PubMed  CAS  Google Scholar 

  • Golynskiy MV, Seelig B (2010) De novo enzymes: from computational design to mRNA display. Trends Biotechnol 28(7):340–345

    PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    PubMed  CAS  Google Scholar 

  • Helppolainen SH, Nurminen KP, Maatta JA, Halling KK, Slotte JP, Huhtala T, Liimatainen T, Yla-Herttuala S, Airenne KJ, Narvanen A, Janis J, Vainiotalo P, Valjakka J, Kulomaa MS, Nordlund HR (2007) Rhizavidin from Rhizobium etli: the first natural dimer in the avidin protein family. Biochem J 405(3):397–405

    PubMed  CAS  Google Scholar 

  • Howarth M, Chinnapen DJ, Gerrow K, Dorrestein PC, Grandy MR, Kelleher NL, El-Husseini A, Ting AY (2006) A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods 3(4):267–273

    PubMed  CAS  Google Scholar 

  • Hsu CK, Park S (2010) Computational and mutagenesis studies of the streptavidin native dimer interface. J Mol Graph Model 29(3):295–308

    PubMed  CAS  Google Scholar 

  • Huberman T, Eisenberg-Domovich Y, Gitlin G, Kulik T, Bayer EA, Wilchek M, Livnah O (2001) Chicken avidin exhibits pseudo-catalytic properties. Biochemical, structural, and electrostatic consequences. J Biol Chem 276(34):32031–32039

    PubMed  CAS  Google Scholar 

  • Hyster TK, Knorr L, Ward TR, Rovis T (2012) Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338(23112327):500–503

    PubMed  CAS  Google Scholar 

  • Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic–Tat peptide conjugates. Bioconjug Chem 10(2):186–191

    PubMed  CAS  Google Scholar 

  • Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC, Hsieh-Wilson LC (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3(6):339–348

    PubMed  CAS  Google Scholar 

  • Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y (2004) A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A 101(34):12479–12484

    PubMed  CAS  Google Scholar 

  • Kim J, Cantor AB, Orkin SH, Wang J (2009) Use of in vivo biotinylation to study protein–protein and protein–DNA interactions in mouse embryonic stem cells. Nat Protoc 4(4):506–517

    PubMed  CAS  Google Scholar 

  • Kohler V, Mao J, Heinisch T, Pordea A, Sardo A, Wilson YM, Knorr L, Creus M, Prost JC, Schirmer T, Ward TR (2011) OsO4.streptavidin: a tunable hybrid catalyst for the enantioselective cis-dihydroxylation of olefins. Angew Chem Int Ed Engl 50(46):10863–10866

    PubMed  Google Scholar 

  • Kohler V, Wilson YM, Durrenberger M, Ghislieri D, Churakova E, Quinto T, Knorr L, Haussinger D, Hollmann F, Turner NJ, Ward TR (2013) Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat Chem 5(2):93–99

    PubMed  CAS  Google Scholar 

  • Laitinen OH, Nordlund HR, Hytonen VP, Kulomaa MS (2007) Brave new (strept)avidins in biotechnology. Trends Biotechnol 25(6):269–277

    PubMed  CAS  Google Scholar 

  • Lau PN, Cheung P (2013) Elucidating combinatorial histone modifications and crosstalks by coupling histone-modifying enzyme with biotin ligase activity. Nucleic Acids Res 41(3):20

    Google Scholar 

  • Lesch HP, Kaikkonen MU, Pikkarainen JT, Yla-Herttuala S (2010) Avidin–biotin technology in targeted therapy. Expert Opin Drug Deliv 7(5):551–564

    PubMed  CAS  Google Scholar 

  • Letondor C, Humbert N, Ward TR (2005) Artificial metalloenzymes based on biotin–avidin technology for the enantioselective reduction of ketones by transfer hydrogenation. Proc Natl Acad Sci U S A 102(13):4683–4687

    PubMed  CAS  Google Scholar 

  • Lim KH, Huang H, Pralle A, Park S (2011) Engineered streptavidin monomer and dimer with improved stability and function. Biochemistry 50(40):8682–8691

    PubMed  CAS  Google Scholar 

  • Lim KH, Hwang I, Park S (2012) Biotin-assisted folding of streptavidin on the yeast surface. Biotechnol Prog 28(1):276–283

    PubMed  CAS  Google Scholar 

  • Lim KH, Huang H, Pralle A, Park S (2013) Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol Bioeng 110(1):57–67

    PubMed  CAS  Google Scholar 

  • Maatta JA, Helppolainen SH, Hytonen VP, Johnson MS, Kulomaa MS, Airenne TT, Nordlund HR (2009) Structural and functional characteristics of xenavidin, the first frog avidin from Xenopus tropicalis. BMC Struct Biol 9:63

    PubMed  Google Scholar 

  • Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30(11):1143–1148

    PubMed  CAS  Google Scholar 

  • Marttila AT, Laitinen OH, Airenne KJ, Kulik T, Bayer EA, Wilchek M, Kulomaa MS (2000) Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett 467(1):31–36

    PubMed  CAS  Google Scholar 

  • Meir A, Helppolainen SH, Podoly E, Nordlund HR, Hytonen VP, Maatta JA, Wilchek M, Bayer EA, Kulomaa MS, Livnah O (2009) Crystal structure of rhizavidin: insights into the enigmatic high-affinity interaction of an innate biotin–binding protein dimer. J Mol Biol 386(2):379–390

    PubMed  CAS  Google Scholar 

  • Meir A, Bayer EA, Livnah O (2012) Structural adaptation of a thermostable biotin-binding protein in a psychrophilic environment. J Biol Chem 287(22):17951–17962

    PubMed  CAS  Google Scholar 

  • Morizono K, Xie Y, Helguera G, Daniels TR, Lane TF, Penichet ML, Chen IS (2009) A versatile targeting system with lentiviral vectors bearing the biotin-adaptor peptide. J Gene Med 11(8):655–663

    PubMed  CAS  Google Scholar 

  • Nguyen UTT, Guo Z, Delon C, Wu YW, Deraeve C, Fraenzel B, Bon RS, Blankenfeldt W, Goody RS, Waldmann H, Wolters D, Alexandrov K (2009) Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat Chem Biol 5(4):227–235

    PubMed  CAS  Google Scholar 

  • Nordlund HR, Hytonen VP, Horha J, Maatta JA, White DJ, Halling K, Porkka EJ, Slotte JP, Laitinen OH, Kulomaa MS (2005) Tetravalent single-chain avidin: from subunits to protein domains via circularly permuted avidins. Biochem J 392(Pt 3):485–491

    PubMed  CAS  Google Scholar 

  • Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262

    PubMed  CAS  Google Scholar 

  • O’Sullivan VJ, Barrette-Ng I, Hommema E, Hermanson GT, Schofield M, Wu S-C, Honetschlaeger C, Ng KKS, Wong S-L (2012) Development of a tetrameric streptavidin mutein with reversible biotin binding capability: engineering a mobile loop as an exit door for biotin. PLoS ONE 7(4):e35203

    PubMed  Google Scholar 

  • Paganelli G, Grana C, Chinol M, Cremonesi M, De Cicco C, De Braud F, Robertson C, Zurrida S, Casadio C, Zoboli S, Siccardi AG, Veronesi U (1999) Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med 26(4):348–357

    PubMed  CAS  Google Scholar 

  • Park SI, Shenoi J, Frayo SM, Hamlin DK, Lin Y, Wilbur DS, Stayton PS, Orgun N, Hylarides M, Buchegger F, Kenoyer AL, Axtman A, Gopal AK, Green DJ, Pagel JM, Press OW (2011) Pretargeted radioimmunotherapy using genetically engineered antibody–streptavidin fusion proteins for treatment of non-Hodgkin lymphoma. Clin Cancer Res 17(23):7373–7382

    PubMed  CAS  Google Scholar 

  • Parrott MB, Adams KE, Mercier GT, Mok H, Campos SK, Barry MA (2003) Metabolically biotinylated adenovirus for cell targeting, ligand screening, and vector purification. Mol Ther 8(4):688–700

    PubMed  CAS  Google Scholar 

  • Pazy Y, Raboy B, Matto M, Bayer EA, Wilchek M, Livnah O (2003) Structure-based rational design of streptavidin mutants with pseudo-catalytic activity. J Biol Chem 278(9):7131–7134

    PubMed  CAS  Google Scholar 

  • Pereboeva L, Komarova S, Roth J, Ponnazhagan S, Curiel DT (2007) Targeting EGFR with metabolically biotinylated fiber-mosaic adenovirus. Gene Ther 14(8):627–637

    PubMed  CAS  Google Scholar 

  • Pierron J, Malan C, Creus M, Gradinaru J, Hafner I, Ivanova A, Sardo A, Ward TR (2008) Artificial metalloenzymes for asymmetric allylic alkylation on the basis of the biotin–avidin technology. Angew Chem Int Ed Engl 47(4):701–705

    PubMed  CAS  Google Scholar 

  • Pizzato M, Blair ED, Fling M, Kopf J, Tomassetti A, Weiss RA, Takeuchi Y (2001) Evidence for nonspecific adsorption of targeted retrovirus vector particles to cells. Gene Ther 8(14):1088–1096

    PubMed  CAS  Google Scholar 

  • Popp MW, Karssemeijer RA, Ploegh HL (2012) Chemoenzymatic site-specific labeling of influenza glycoproteins as a tool to observe virus budding in real time. PLoS Pathog 8(3):e1002604

    PubMed  CAS  Google Scholar 

  • Pordea A, Creus M, Panek J, Duboc C, Mathis D, Novic M, Ward TR (2008) Artificial metalloenzyme for enantioselective sulfoxidation based on vanadyl-loaded streptavidin. J Am Chem Soc 130(25):8085–8088

    PubMed  CAS  Google Scholar 

  • Pordea A, Creus M, Letondor C, Ivanova A, Ward TR (2010) Improving the enantioselectivity of artificial transfer hydrogenases based on the biotin–streptavidin technology by combinations of point mutations. Inorg Chim Acta 363(3):601–604

    CAS  Google Scholar 

  • Purow B, Staveley-O’Carroll K (2005) Targeting of vaccinia virus using biotin–avidin viral coating and biotinylated antibodies. J Surg Res 123(1):49–54

    PubMed  CAS  Google Scholar 

  • Raiteri R, Grattarola M, Butt HJ, Skladal P (2001) Micromechanical cantilever-based biosensors. Sensors Actuators B Chem 79(2–3):115–126

    CAS  Google Scholar 

  • Reetz MT, Rentzsch M, Pletsch A, Maywald M, Maiwald P, Peyralans JJP, Maichele A, Fu Y, Jiao N, Hollmann F, Mondiere R, Taglieber A (2007) Directed evolution of enantioselective hybrid catalysts: a novel concept in asymmetric catalysis. Tetrahedron 63(28):6404–6414

    CAS  Google Scholar 

  • Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339(6125):1328–1331

    PubMed  CAS  Google Scholar 

  • Rinne J, Albarran B, Jylhava J, Ihalainen TO, Kankaanpaa P, Hytonen VP, Stayton PS, Kulomaa MS, Vihinen-Ranta M (2007) Internalization of novel non-viral vector TAT–streptavidin into human cells. BMC Biotechnol 7:1

    PubMed  Google Scholar 

  • Ruigrok VJB, van Duijn E, Barendregt A, Dyer K, Tainer JA, Stoltenburg R, Strehlitz B, Levisson M, Smidt H, van der Oost J (2012) Kinetic and stoichiometric characterisation of streptavidin-binding aptamers. Chembiochem 13(6):829–836

    PubMed  CAS  Google Scholar 

  • Sakahara H, Saga T (1999) Avidin–biotin system for delivery of diagnostic agents. Adv Drug Deliv Rev 37(1–3):89–101

    PubMed  CAS  Google Scholar 

  • Sano T, Vajda S, Reznik GO, Smith CL, Cantor CR (1996) Molecular engineering of streptavidin. Ann N Y Acad Sci 799:383–390

    PubMed  CAS  Google Scholar 

  • Shoaib M, Kulyyassov A, Robin C, Winczura K, Tarlykov P, Despas E, Kannouche P, Ramanculov E, Lipinski M, Ogryzko V (2013) PUB-NChIP—“in vivo biotinylation” approach to study chromatin in proximity to a protein of interest. Genome Res 23(2):331–340

    PubMed  CAS  Google Scholar 

  • Skerra A, Schmidt TGM (2000) Use of the Strep-tag and streptavidin for detection and purification of recombinant proteins. Appl Chim Genes Hybrid Proteins Pt A 326:271–304

    CAS  Google Scholar 

  • Srisawat C, Engelke DR (2001) Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7(4):632–641

    PubMed  CAS  Google Scholar 

  • Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J (2006) Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials 27(29):5143–5150

    PubMed  CAS  Google Scholar 

  • Sun W, Fletcher D, van Heeckeren RC, Davis PB (2012) Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin. J Drug Target 20(22845840):678–690

    PubMed  CAS  Google Scholar 

  • Tagwerker C, Flick K, Cui M, Guerrero C, Dou Y, Auer B, Baldi P, Huang L, Kaiser P (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5(4):737–748

    PubMed  CAS  Google Scholar 

  • Takakura Y, Tsunashima M, Suzuki J, Usami S, Kakuta Y, Okino N, Ito M, Yamamoto T (2009) Tamavidins—novel avidin-like biotin-binding proteins from the Tamogitake mushroom. FEBS J 276(5):1383–1397

    PubMed  CAS  Google Scholar 

  • Takakura Y, Sofuku K, Tsunashima M (2013) Tamavidin 2-REV: an engineered tamavidin with reversible biotin-binding capability. J Biotechnol 164(1):19–25

    Google Scholar 

  • Tanaka K, Yokoi S, Morimoto K, Iwata T, Nakamoto Y, Nakayama K, Koyama K, Fujiwara T, Fukase K (2012) Cell surface biotinylation by azaelectrocyclization: easy-handling and versatile approach for living cell labeling. Bioorg Med Chem 20(6):1865–1868

    PubMed  CAS  Google Scholar 

  • Tannous BA, Grimm J, Perry KF, Chen JW, Weissleder R, Breakefield XO (2006) Metabolic biotinylation of cell surface receptors for in vivo imaging. Nat Methods 3(5):391–396

    PubMed  CAS  Google Scholar 

  • Taylor SK, Wang J, Kostic N, Stojanovic MN (2013) Monovalent streptavidin that senses oligonucleotides. Angew Chem Int Ed Engl 52(21):5509–5512

    PubMed  CAS  Google Scholar 

  • Tenzer S, Moro A, Kuharev J, Francis AC, Vidalino L, Provenzani A, Macchi P (2013) Proteome-wide characterization of the RNA-binding protein RALY-interactome using the in Vivo-Biotinylation-Pulldown-Quant (iBioPQ) Approach. J Proteome Res 12(6):2869–2884

    PubMed  CAS  Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A 98(15):8786–8791

    PubMed  CAS  Google Scholar 

  • van Werven FJ, Timmers HT (2006) The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation. Nucleic Acids Res 34(4):e33

    PubMed  Google Scholar 

  • Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8(8):573–587

    PubMed  CAS  Google Scholar 

  • Wang C, Yang G, Luo Z, Ding H (2009) In vitro selection of high-affinity DNA aptamers for streptavidin. Acta Biochim Biophys Sin (Shanghai) 41(4):335–340

    CAS  Google Scholar 

  • Ward TR (2011) Artificial metalloenzymes based on the biotin–avidin technology: enantioselective catalysis and beyond. Acc Chem Res 44(1):47–57

    PubMed  CAS  Google Scholar 

  • Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243(4887):85–88

    PubMed  CAS  Google Scholar 

  • Wilchek M, Bayer EA (1988) The avidin–biotin complex in bioanalytical applications. Anal Biochem 171(1):1–32

    PubMed  CAS  Google Scholar 

  • Wilchek M, Bayer EA, Livnah O (2006) Essentials of biorecognition: the (strept)avidin–biotin system as a model for protein–protein and protein–ligand interaction. Immunol Lett 103(1):27–32

    PubMed  CAS  Google Scholar 

  • Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27(4):378–386

    PubMed  CAS  Google Scholar 

  • Wu SC, Wong SL (2005) Engineering soluble monomeric streptavidin with reversible biotin binding capability. J Biol Chem 280(24):23225–23231

    PubMed  CAS  Google Scholar 

  • Xia CF, Boado RJ, Pardridge WM (2009) Antibody-mediated targeting of siRNA via the human insulin receptor using avidin–biotin technology. Mol Pharm 6(3):747–751

    PubMed  CAS  Google Scholar 

  • Yumura K, Ui M, Doi H, Hamakubo T, Kodama T, Tsumoto K, Sugiyama A (2013) Mutations for decreasing the immunogenicity and maintaining the function of core streptavidin. Protein Sci 22(23225702):213–221

    PubMed  CAS  Google Scholar 

  • Zeidan Q, Hart GW (2010) The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci 123(Pt 1):13–22

    PubMed  CAS  Google Scholar 

  • Zimbron JM, Heinisch T, Schmid M, Hamels D, Nogueira ES, Schirmer T, Ward TR (2013) A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology. J Am Chem Soc 135(14):5384–5388

    PubMed  CAS  Google Scholar 

  • Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, Boumsell L, Buckley C, Buhring HJ, Clark G, Engel P, Fox D, Jin BQ, Macardle PJ, Malavasi F, Mason D, Stockinger H, Yang X (2007) CD molecules 2006—human cell differentiation molecules. J Immunol Methods 319(1–2):1–5

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dundas, C.M., Demonte, D. & Park, S. Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 97, 9343–9353 (2013). https://doi.org/10.1007/s00253-013-5232-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5232-z

Keywords

Navigation