Skip to main content
Log in

Effects of methanol on a methanol-tolerant bacterial lipase

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methanol is often employed in biocatalysis with the purpose of increasing substrates solubility or as the acyl acceptor in transesterification reactions, but inhibitory effects are observed in several cases. We have studied the influence of methanol on the catalytic activity and on the conformation of the lipase from Burkholderia glumae, which is reported to be highly methanol tolerant if compared with other lipases. We detected highest activity in the presence of 50–70 % methanol. Under these conditions, however, the enzyme stability is perturbed, leading to gradual protein unfolding and finally to aggregation. These results surmise that, for this lipase, methanol-induced deactivation does not depend on inhibition of catalytic activity but rather on negative effects on the conformational stability of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamczak M, Bornscheuer UY, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:808–813

    Article  Google Scholar 

  • Barth A (2007) Infrared spectroscopy of proteins. BBA-Bioenergetics 1767:1073–1101

    Article  PubMed  CAS  Google Scholar 

  • Bommarius AS, Riebel BR (2004) Biocatalysis, Fundamentals and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Brocca S, Schmidt-Dannert C, Lotti M, Alberghina L, Schmid R (1998) Design, total synthesis, and functional overexpression of the Candida rugosa lipl gene coding for a major industrial lipase. Protein Sci 7:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190

    Article  PubMed  CAS  Google Scholar 

  • Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed 39:2226–2254

    Article  CAS  Google Scholar 

  • Chen JW, Wu WT (2003) Regeneration of immobilized Candida Antarctica lipase for transesterification. J Biosci Bioeng 95(5):466–469

    PubMed  CAS  Google Scholar 

  • Faber K (2011) Biotransformations in organic chemistry: a textbook, 6th edn. Springer, Berlin

  • Fjerbaek L, Christensen KV, Borddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315

    Article  PubMed  CAS  Google Scholar 

  • Hsu A-F, Jones KC, Foglia TA, Marmer WN (2003) Optimisation of alkyl ester production from grease using a phyllosilicate sol–gel immobilised lipase. Biotechnol Lett 25:1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Invernizzi G, Casiraghi L, Grandori R, Lotti M (2009a) Deactivation and unfolding are uncoupled in a bacterial lipase exposed to heat, low pH and organic solvents. J Biotechnol 141:42–46

    Article  PubMed  CAS  Google Scholar 

  • Invernizzi G, Papaleo E, Grandori R, De Gioia L, Lotti M (2009b) Relevance of metal ions for lipase stability: structural rearrangements induced in the Burkholderia glumae lipase by calcium depletion. J Struct Biol 168:562–570

    Article  PubMed  CAS  Google Scholar 

  • Lang D, Hofmann B, Haalck L, Hecht HJ, Spener F, Schmid RD, Schomburg D (1996) Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC6918 refined at 1.6 Angstroms resolution. J Mol Biol 259:704–717

    Article  PubMed  CAS  Google Scholar 

  • Meló EP, Taipa MA, Castellar MR, Costa SMB, Cabral JMS (2000) A spectroscopical analysis of thermal stability of the Chromobacterium viscosum lipase. Biophys Chem 87:111–120

    Article  PubMed  Google Scholar 

  • Natalello A, Ami D, Brocca S, Lotti M, Doglia SM (2005) Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy. Biochem J 385:511–517

    Article  PubMed  CAS  Google Scholar 

  • Natalello A, Sasso F, Secundo F (2013) Enzymatic transesterification monitored by a new easy-to-use Fourier transform infrared spectroscopy method. Biotechnol J 8(1):133–138

    Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96(7):769–777

    Article  PubMed  CAS  Google Scholar 

  • Öztűrk DC, Kazan D, Denizci AA, Grimoldi D, Secundo F, Erarslan A (2010) Water miscible mono alcohols effect on the structural conformation of Bacillus clausii GMBAE 42 serine alkaline protease. J Mol Catal B-Enzym 64:184–188

    Article  Google Scholar 

  • Parawira W (2009) Biotechnological production of biodiesel fuel using biocatalyzed transesterification: a review. Crit Rev Biotechnol 29(2):82–93

    Article  PubMed  CAS  Google Scholar 

  • Pauwels K, Sanchez del Pino MM, Feller G, Van Gelder P (2012) Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability. PLoS One 7:e36999

    Article  PubMed  CAS  Google Scholar 

  • Salis A, Pinna M, Monduzzi M, Solinas V (2005) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119(3):291–299

    Article  PubMed  CAS  Google Scholar 

  • Secundo F, Fialà S, Fraaije MW, De Gonzalo G, Meli M, Zambianchi F, Ottolina G (2011) Effects of water miscible organic solvents on the activity and conformation of the Baeyer–Villiger monooxigenases from Thermobifida fusca and Acinetobacter calcoaceticus: a comparative study. Biotechnol Bioeng 108(3):491–499

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil to biodiesel using immobilised Candida antarctica lipase. J Am Oil Chem Soc 76(7):789–793

    Article  CAS  Google Scholar 

  • Walde P, Luisi PL (1989) A continuous assay for lipases in reverse micelles based on Fourier transform infrared spectroscopy. Biochemistry 28:3353–3360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a grant of the Regione Lombardia (ASTIL) to M.L. F.S. acknowledges a PhD fellowship from the University of Milano-Bicocca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Lotti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santambrogio, C., Sasso, F., Natalello, A. et al. Effects of methanol on a methanol-tolerant bacterial lipase. Appl Microbiol Biotechnol 97, 8609–8618 (2013). https://doi.org/10.1007/s00253-013-4712-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4712-5

Keywords

Navigation