Skip to main content

Advertisement

Log in

Intestinal microbiota associated with differential feed conversion efficiency in chickens

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Analysis of model systems, for example in mice, has shown that the microbiota in the gastrointestinal tract can play an important role in the efficiency of energy extraction from diets. The study reported here aimed to determine whether there are correlations between gastrointestinal tract microbiota population structure and energy use in chickens. Efficiency in converting food into muscle mass has a significant impact on the intensive animal production industries, where feed represents the major portion of production costs. Despite extensive breeding and selection efforts, there are still large differences in the growth performance of animals fed identical diets and reared under the same conditions. Variability in growth performance presents management difficulties and causes economic loss. An understanding of possible microbiota drivers of these differences has potentially important benefits for industry. In this study, differences in cecal and jejunal microbiota between broiler chickens with extreme feed conversion capabilities were analysed in order to identify candidate bacteria that may influence growth performance. The jejunal microbiota was largely dominated by lactobacilli (over 99% of jejunal sequences) and showed no difference between the birds with high and low feed conversion ratios. The cecal microbial community displayed higher diversity, and 24 unclassified bacterial species were found to be significantly (<0.05) differentially abundant between high and low performing birds. Such differentially abundant bacteria represent target populations that could potentially be modified with prebiotics and probiotics in order to improve animal growth performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aggrey SE, Karnuah AB, Sebastian B, Anthony NB (2010) Genetic properties of feed efficiency parameters in meat-type chickens. Genet Sel Evol 42:25

    Article  Google Scholar 

  • Al-Sheikhly F, Al-Saieg A (1980) Role of Coccidia in the occurrence of necrotic enteritis of chickens. Avian Dis 24(2):324–333

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  • Ani AO, Okorie AU (2009) Response of broiler finishers to diets containing graded levels of processed castor oil bean (Ricinus communis L) meal. J Anim Physiol Anim Nutr (Berl) 93(2):157–164

    Article  CAS  Google Scholar 

  • Apajalahti J, Kettunen A, Graham H (2004) Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World Poultry Sci J 60(2):223–232

    Article  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71(12):7724–7736

    Article  CAS  Google Scholar 

  • Brake J, Faust MA, Stein J (2003) Evaluation of transgenic event Bt11 hybrid corn in broiler chickens. Poult Sci 82(4):551–559

    CAS  Google Scholar 

  • Brisbin JT, Gong J, Sharif S (2008) Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim Health Res Rev 9(1):101–110

    Article  Google Scholar 

  • Callaway TR, Dowd SE, Wolcott RD, Sun Y, McReynolds JL, Edrington TS, Byrd JA, Anderson RC, Krueger N, Nisbet DJ (2009) Evaluation of the bacterial diversity in cecal contents of laying hens fed various molting diets by using bacterial tag-encoded FLX amplicon pyrosequencing. Poult Sci 88(2):298–302

    Article  CAS  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  Google Scholar 

  • Chansiripornchai N, Sasipreeyajan J (2002) Efficacy of sarafloxacin in broilers after experimental infection with Escherichia coli. Vet Res Commun 26(4):255–262

    Article  CAS  Google Scholar 

  • Choct M, Hughes RJ, Wang J, Bedford MR, Morgan AJ, Annison G (1996) Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br Poult Sci 37(3):609–621

    Article  CAS  Google Scholar 

  • Collier CT, Hofacre CL, Payne AM, Anderson DB, Kaiser P, Mackie RI, Gaskins HR (2008) Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet Immunol Immunopathol 122(1–2):104–115

    Article  CAS  Google Scholar 

  • Cooper MA, Washburn KW (1998) The relationships of body temperature to weight gain, feed consumption, and feed utilization in broilers under heat stress. Poult Sci 77(2):237–242

    CAS  Google Scholar 

  • Costa EF, Miller BR, Pesti GM, Bakalli RI, Ewing HP (2001) Studies on feeding peanut meal as a protein source for broiler chickens. Poult Sci 80(3):306–313

    CAS  Google Scholar 

  • Cowieson AJ, Singh DN, Adeola O (2006) Prediction of ingredient quality and the effect of a combination of xylanase, amylase, protease and phytase in the diets of broiler chicks. 1. Growth performance and digestible nutrient intake. Br Poult Sci 47(4):477–489

    Article  CAS  Google Scholar 

  • Cressman MD, Yu Z, Nelson MC, Moeller SJ, Lilburn MS, Zerby HN (2010) Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens. Appl Environ Microbiol 76(19):6572–6582

    Article  CAS  Google Scholar 

  • Delzenne NM, Cani PD (2010) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 21(31):15–31

    Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449(7164):811–818

    Article  CAS  Google Scholar 

  • Engberg RM, Hedemann MS, Steenfeldt S, Jensen BB (2004) Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult Sci 83(6):925–938

    CAS  Google Scholar 

  • Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans AD (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143(Pt 9):2983–2989

    Article  CAS  Google Scholar 

  • Feng Y, Gong J, Yu H, Jin Y, Zhu J, Han Y (2010) Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Vet Microbiol 140(1–2):116–121

    Article  CAS  Google Scholar 

  • Fujimura KE, Slusher NA, Cabana MD, Lynch SV (2010) Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 8(4):435–454

    Article  Google Scholar 

  • Giannenas I, Tontis D, Tsalie E, Chronis EF, Doukas D, Kyriazakis I (2010) Influence of dietary mushroom Agaricus bisporus on intestinal morphology and microflora composition in broiler chickens. Res Vet Sci 89(1):78–84

    Article  CAS  Google Scholar 

  • Gong J, Si W, Forster RJ, Huang R, Yu H, Yin Y, Yang C, Han Y (2007) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Ecol 59(1):147–157

    Article  CAS  Google Scholar 

  • Gonzalez A, Piqueres P, Moreno Y, Canigral I, Owen RJ, Hernandez J, Ferrus MA (2008) A novel real-time PCR assay for the detection of Helicobacter pullorum-like organisms in chicken products. Int Microbiol 11(3):203–208

    CAS  Google Scholar 

  • Greiner T, Backhed F (2011) Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22(4):117–123

    Article  CAS  Google Scholar 

  • Henriksen M, Bisgaard M, Francesch M, Gabriel I, Christensen H (2009) Evaluation of PCR and DNA sequencing for direct detection of Clostridium perfringens in the intestinal tract of broilers. Avian Dis 53(3):441–448

    Article  Google Scholar 

  • Hoffmann C, Hill DA, Minkah N, Kirn T, Troy A, Artis D, Bushman F (2009) Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect Immun 77(10):4668–4678

    Article  CAS  Google Scholar 

  • Iqbal MF, Zhu WY (2009) Characterization of newly isolated Lactobacillus delbrueckii-like strain MF-07 isolated from chicken and its role in isoflavone biotransformation. FEMS Microbiol Lett 291(2):180–187

    Article  CAS  Google Scholar 

  • Jia W, Slominski BA (2010) Means to improve the nutritive value of flaxseed for broiler chickens: the effect of particle size, enzyme addition, and feed pelleting. Poult Sci 89(2):261–269

    Article  CAS  Google Scholar 

  • Jia W, Slominski BA, Bruce HL, Blank G, Crow G, Jones O (2009) Effects of diet type and enzyme addition on growth performance and gut health of broiler chickens during subclinical Clostridium perfringens challenge. Poult Sci 88(1):132–140

    Article  CAS  Google Scholar 

  • Karimi Torshizi MA, Moghaddam AR, Rahimi S, Mojgani N (2010) Assessing the effect of administering probiotics in water or as a feed supplement on broiler performance and immune response. Br Poult Sci 51(2):178–184

    Article  CAS  Google Scholar 

  • Kelly D, Conway S (2005) Bacterial modulation of mucosal innate immunity. Mol Immunol 42(8):895–901

    Article  CAS  Google Scholar 

  • Korver DR, Zuidhof MJ, Lawes KR (2004) Performance characteristics and economic comparison of broiler chickens fed wheat- and triticale-based diets. Poult Sci 83(5):716–725

    CAS  Google Scholar 

  • Lane DJ (ed) (1991) 16S and 23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. Wiley, Chichester

    Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659

    Article  CAS  Google Scholar 

  • Lovanh N, Cook KL, Rothrock MJ, Miles DM, Sistani K (2007) Spatial shifts in microbial population structure within poultry litter associated with physicochemical properties. Poult Sci 86(9):1840–1849

    CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    Article  CAS  Google Scholar 

  • Lumpkins BS, Batal AB, Lee M (2008) The effect of gender on the bacterial community in the gastrointestinal tract of broilers. Poult Sci 87(5):964–967

    Article  CAS  Google Scholar 

  • Lund M, Bjerrum L, Pedersen K (2010) Quantification of Faecalibacterium prausnitzii- and Subdoligranulum variabile-like bacteria in the cecum of chickens by real-time PCR. Poult Sci 89(6):1217–1224

    Article  CAS  Google Scholar 

  • Martin E, Fallschissel K, Kämpfer P, Jäckel U (2010) Detection of Jeotgalicoccus spp. in poultry house air. Syst Appl Microbiol 33(4):188–192

    Article  CAS  Google Scholar 

  • NRC (1994) Nutrient requirements of poultry 9th rev. ed. National Research Council. Natl. Acad. Press, Washington

    Google Scholar 

  • Nurmi E, Nuotio L, Schneitz C (1992) The competitive exclusion concept: development and future. Int J Food Microbiol 15(3–4):237–240

    Article  CAS  Google Scholar 

  • Pentimalli D, Pegels N, Garcia T, Martin R, Gonzalez I (2009) Specific PCR detection of Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter skirrowii, and Arcobacter cibarius in chicken meat. J Food Prot 72(7):1491–1495

    CAS  Google Scholar 

  • Quinlan AR, Stewart DA, Stromberg MP, Marth GT (2008) Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat Methods 5(2):179–181

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  Google Scholar 

  • Shane SM, Gyimah JE, Harrington KS, Snider TGr (1985) Etiology and pathogenesis of necrotic enteritis. Vet Res Commun 9(4):269–287

    Article  CAS  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57(5):758–771

    Article  Google Scholar 

  • Torok VA, Ophel-Keller K, Loo M, Hughes RJ (2008) Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl Environ Microbiol 74(3):783–791

    Article  CAS  Google Scholar 

  • Torok VA, Hughes RJ, Mikkelsen LL, Perez-Maldonado R, Balding K, McAlpine R, Percy NJ, Ophel-Keller K (2011) Identification and characterization of potential performance related gut microbiota in broiler chickens across various feeding trials. Appl Environ Microbiol 77(17):5868–5878

    Article  CAS  Google Scholar 

  • Umesaki Y, Setoyama H, Matsumoto S, Imaoka A, Itoh K (1999) Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun 67(7):3504–3511

    CAS  Google Scholar 

  • Williams RB (2005) Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol 34(3):159–180

    Article  CAS  Google Scholar 

  • Yin Y, Lei F, Zhu L, Li S, Wu Z, Zhang R, Gao GF, Zhu B, Wang X (2010) Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression. ISME J 4(3):367–376

    Article  CAS  Google Scholar 

  • Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36(5):808–812

    CAS  Google Scholar 

  • Yu H, Zhou T, Gong J, Young C, Su X, Li XZ, Zhu H, Tsao R, Yang R (2010) Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection. BMC Microbiol 10:182

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Anthony Keyburn and Mark Tizard for the comments on the manuscript. We would also like to thank Derek Schultz, Evelyn Daniels and Kylee Swanson for the assistance with animal experimentation. This research was conducted within the Australian Poultry Cooperative Research Center, established and supported under the Australian Government's Cooperative Research Centers Program. High-performance computing infrastructure and support was provided by the Queensland Facility for Advanced Bioinformatics (QFAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Stanley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, D., Denman, S.E., Hughes, R.J. et al. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol 96, 1361–1369 (2012). https://doi.org/10.1007/s00253-011-3847-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3847-5

Keywords

Navigation