Skip to main content
Log in

Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A mixed methane-oxidizing biofilm was characterized, concurrently using a number of advanced techniques. Community analysis results by microarray exhibited that type II members dominated the methanotrophic community, in which Methylocystis was most abundant, followed by Methylosinus. Observation results by fluorescent in situ hybridization and confocal microscopy showed multiple biofilm colonies that were irregular, bell-shaped, with mean thickness of approximately 20 μm. Image analysis results indicated that the relative abundance of methanotrophs peaked at a depth of about 5 μm. Although the biofilm colonies differed in size, methanotrophs accounted for 4–9%. Gaussian and linear regression results between the biofilm volumes and types I (r 2 = 0.86) and II volumes (r 2 = 0.92), respectively, revealed that type I members played a role in the growth of the biofilm but only below a threshold volume, whereas type II members supported the overall growth. Geostatistical analyses results revealed concentration of types I and II methanotrophic individuals with decreasing depth, and randomness between the spatial locations and population levels. Collectively, the methane-oxidizing biofilm was a highly organized system with methanotrophs and their cohabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaral JA, Archambault C, Richards SR, Knowles R (1995) Denitrification associated with groups I and II methanotrophs in a gradient enrichment system. FEMS Microbiol Ecol 18(4):289–298

    Article  CAS  Google Scholar 

  • Beyenal H, Lewandowski Z (2002) Internal and external mass transfer in biofilms grown at various flow velocities. Biotechnol Progr 18(1):55–61. doi:10.1021/bp010129s

    Article  CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5(7):566–582

    Article  CAS  Google Scholar 

  • Christensen BB, Sternberg C, Andersen JB, Eberl L, Moller S, Givskov M, Molin S (1998) Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64(6):2247–2255

    CAS  Google Scholar 

  • Clapp LW, Regan JM, Ali F, Newman JD, Park JK, Noguera DR (1999) Activity, structure, and stratification of membrane attached methanotrophic biofilms cometabolically degrading trichloroethylene. Water Sci Technol 39(7):153–161

    Article  CAS  Google Scholar 

  • de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotchnol Bioeng 43(11):1131–1138. doi:10.1002/bit.260431118

    Article  Google Scholar 

  • Eller G, Stubner S, Frenzel P (2001) Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEMS Microbiol Lett 198(2):91–97

    Article  CAS  Google Scholar 

  • Gebert J, Gröngröft A, Schloter M, Gattinger A (2004) Community structure in a methanotroph biofilter as revealed by phospholipid fatty acid analysis. FEMS Microbiol Lett 240(1):61–68

    Article  CAS  Google Scholar 

  • Gebert J, Stralis-Pavese N, Alawi M, Bodrossy L (2008) Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ Microbiol 10(5):1175–1188

    Article  CAS  Google Scholar 

  • Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb Ecol 25(1):1–17

    Article  CAS  Google Scholar 

  • Hanson R, Hanson T (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  Google Scholar 

  • Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2(6):666–679

    Article  CAS  Google Scholar 

  • Lee E-H, Park H, Cho K-S (2010) Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. J Hazard Mater 184(1–3):313–320

    Article  CAS  Google Scholar 

  • Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high arctic. Appl Environ Microbiol 76(17):5773–5784. doi:10.1128/aem.03094-09

    Article  CAS  Google Scholar 

  • McDonald IR, Upton M, Hall G, Pickup RW, Edwards C, Saunders JR, Ritchie DA, Murrell JC (1999) Molecular ecological analysis of methanogens and methanotrophs in blanket bog peat. Microb Ecol 38(3):225–233

    Article  CAS  Google Scholar 

  • Modin O, Fukushi K, Yamamoto K (2008) Simultaneous removal of nitrate and pesticides from groundwater using a methane-fed membrane biofilm reactor. Water Sci Technol 58(6):1273–1279

    Article  CAS  Google Scholar 

  • Modin O, Fukushi K, Nakajima F, Yamamoto K (2010) Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes. Water Res 44(1):85–96

    Article  CAS  Google Scholar 

  • Murrell JC, Dalton H (1983) Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129(11):3481–3486. doi:10.1099/00221287-129-11-3481

    CAS  Google Scholar 

  • Qureshi N, Annous B, Ezeji T, Karcher P, Maddox I (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4(1):24

    Article  Google Scholar 

  • Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H, Stackebrandt E (1996) Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142(8):2087–2095. doi:10.1099/13500872-142-8-2087

    Article  CAS  Google Scholar 

  • Rittmann BE (2006) Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol 24(6):261–266

    Article  CAS  Google Scholar 

  • Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res 27(5):409–455. doi:10.1177/0734242x09339325

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):1–36

    Google Scholar 

  • Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185(5):1485–1491. doi:10.1128/jb.185.5.1485-1491.2003

    Article  CAS  Google Scholar 

  • Takeda K (1988) Characteristics of a nitrogen-fixing methanotroph, Methylocystis T-1. Antonie Leeuwenhoek 54(6):521–534. doi:10.1007/bf00588388

    Article  CAS  Google Scholar 

  • Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40(2):75–84

    Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61(2):205–218. doi:10.1099/00221287-61-2-205

    Article  CAS  Google Scholar 

  • Yoon S, Carey J, Semrau J (2009) Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biotechnol 83(5):949–956. doi:10.1007/s00253-009-1977-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRL program, R0A-2008-000-20044-0), and RP-Grant 2011 of Ewha Womans University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Suk Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.G., Yi, T., Lee, EH. et al. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl Microbiol Biotechnol 95, 1051–1059 (2012). https://doi.org/10.1007/s00253-011-3728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3728-y

Keywords

Navigation