Skip to main content

Advertisement

Log in

cDNA cloning of a novel gene codifying for the enzyme lycopene β-cyclase from Ficus carica and its expression in Escherichia coli

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lycopene beta-cyclase (β-LCY) is the key enzyme that modifies the linear lycopene molecule into cyclic β-carotene, an indispensable carotenoid of the photosynthetic apparatus and an important source of vitamin A in human and animal nutrition. Owing to its antioxidant activity, it is commercially used in the cosmetic and pharmaceutical industries, as well as an additive in foodstuffs. Therefore, β-carotene has a large share of the carotenoidic market. In this study, we used reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE)-PCR to obtain and clone a cDNA copy of the gene Lyc-β from Ficus carica (Lyc-β Fc), which codes for the enzyme lycopene β-cyclase (β-LCY). Expression of this gene in Escherichia coli produced a single polypeptide of 56 kDa of weight, containing 496 amino acids, that was able to cycle both ends of the lycopene chain. Amino acid analysis revealed that the protein contained several conserved plant cyclase motifs. β-LCY activity was revealed by heterologous complementation analysis, with lycopene being converted to β-carotene as a result of the enzyme’s action. The β-LCY activity of the expressed protein was confirmed by high-performance liquid chromatography (HPLC) identification of the β-carotene. The lycopene to β-carotene conversion rate was 90%. The experiments carried out in this work showed that β-LYC is the enzyme responsible for converting lycopene, an acyclic carotene, to β-carotene, a bicyclic carotene in F. carica. Therefore, by cloning and expressing β-LCY in E. coli, we have obtained a new gene for β-carotene production or as part of the biosynthetic pathway of astaxanthin. So far, this is the first and only gene of the carotenoid pathway identified in F. carica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahrazem O, Rubio-Moraga A, Castillo R, Gomez-Gomez L (2009) The expression of chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron’s apocarotenoid precursors. J Exp Bot 61(1):105–119. doi:https://doi.org/10.1093/jxb/erp283

    Article  CAS  Google Scholar 

  • Alquezar B, Zacarias L, Rodrigo MJ (2009) Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation. J Exp Bot 60(6):1783–1797. doi:https://doi.org/10.1093/jxb/erp048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Ampomah-Dwamena C, McGhile T, Wibisono R, Montefiori M, Hellens RP, Allan AC (2009) The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J Exp Bot 60(13):3765–3779. doi:https://doi.org/10.1093/jxb/erp218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer P, Kröncke U, Nievelstein V (1991) On the mechanism of the lycopene isomerase/cyclase reaction in Narcissus pseudonarcissus L. chromoplasts. J Biol Chem 266(26):17072–17078

    CAS  PubMed  Google Scholar 

  • Bouvier F, d’Harlingue A, Camara B (1997) Molecular analysis of carotenoid cyclase inhibition. Arch Biochem Biophys 346(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44(6):357–429

    Article  CAS  PubMed  Google Scholar 

  • Britton G (1998) Overview of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S and Pfander H (eds) Carotenoids: biosynthesis and metabolism. Birkhäuser Verlag, Basel, Switzerland, pp 13–147

  • Cunningham FX (2002) Regulation of carotenoid synthesis and accumulation in plants. Pure Appl Chem 74:1409–1417

    Article  CAS  Google Scholar 

  • Cunningham FX, Sun Z, Chamovitz D, Hirschberg J, Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp. strain PCC7942. Plant Cell 6:1107–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham FX, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8(9):1613–1626

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi L, Stigliani A, Cellini F (2004) Virtually complete conversion of lycopene into beta-carotene in fruits of tomato plants transformed with the tomato lycopene beta cyclase (tlcy-b) cDNA. Plant Sci 166:207–214. doi:https://doi.org/10.1016/j.plantsci.2003.09.015

    Article  CAS  Google Scholar 

  • Daisuke U, Alexander VT, Frances HA (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69(1):51–78. doi:https://doi.org/10.1128/MMBR.69.1.51-78.2005

    Article  CAS  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57(1):711–738

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8(5):978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank H, Cogdell RJ (1993) Photochemistry and function of carotenoids in photosynthesis. In: Young AJ, Britton G (eds) Carotenoids and photosynthesis. Chapman & Hall, London, pp 253–326

    Google Scholar 

  • Fraser PD, Bramley P (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43(3):228–265

    Article  CAS  PubMed  Google Scholar 

  • Gallagher CE, Cervantes M, Wurtzel ET (2003) Surrogate biochemistry: use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid accumulation. Appl Microbiol Biotechnol 60(6):713–719

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4(3):210–218

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg J, Cohen M, Harker M, Lotan T, Mann V, Pecker I (1997) Molecular genetics of the carotenoid biosynthesis pathway in plants and algae. Pure Appl Chem 69(10):2151–2158

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  PubMed  Google Scholar 

  • Hugueney P, Badillo A, Chen HC, Klein A, Hirschberg J, Camara B, Kuntz M (1995) Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts. Plant J 8(3):417–424

    Article  CAS  PubMed  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinf 5:150–163

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London, UK) 227:680–685

    Article  CAS  Google Scholar 

  • Lianju W, Weibin J, Kai M, Zhifeng L, Yelin W (2003) The production and research of fig (Ficus carica L.) in China. Acta Horticult 605:191–196

    Article  Google Scholar 

  • Melendez Martinez AJ, Vicario IM, Heredia FJ (2003) A routine high-perfomance liquid chromatography method for carotenoid determination in ultrafrozen orange juices. J Agric Food Chem 51:4219–4224

    Article  CAS  PubMed  Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtanai T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa N, Shimada H (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59(3):169–181

    Article  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34–35

    Article  CAS  PubMed  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, Dellapenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation and photomorphogenesis. Plant Cell 14:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecker I, Gabbay R, Cunningham FX, Hirschberg J (1996) Coning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol 30:807–819

    Article  CAS  PubMed  Google Scholar 

  • Peelman F, Labeur C, Vanloo B, Roosbeek S, Devaud C, Duverger N, Denefle P, Rosier M, Vandekerckhove J, Rosseneu M (2003) Characterization of the ABCA transporter subfamily: identification of prokaryotic and eukaryotic members, phylogeny and topology. J Mol Biol 325:259–274

    Article  CAS  PubMed  Google Scholar 

  • Rodney AL (1994) Production of carotenoids by recombinant DNA technology. Pure Appl Chem 5(66):1057–1062

    Google Scholar 

  • Rodrigo MJ, Marcos JF, Zacarías L (2004) Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric Food Chem 52(22):6724–6731

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Concepción M (2006) Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells. Phytochem Rev 1(5):1–15

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sandmann G (1994) Phytoene desaturase — genes, enzymes and phylogenetic aspects. J Plant Physiol 143(4–5):444–447

    Article  CAS  Google Scholar 

  • Sandmann G, Woods WS, Tuveson RW (1990) Identification of carotenoids in Erwinia herbicola and in a transformed Escherichia coli strain. FEMS Microbiol Lett 59(1–2):77–82

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Romer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 8(4):291–302

    Article  CAS  PubMed  Google Scholar 

  • Schurr G, Misawa N, Sandmann G (1996) Expression, purification and properties of lycopene cyclase from Erwinia uredovora. Biochem J 315:869–874

    Article  Google Scholar 

  • Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE, Altman A, Kerem Z, Flaishman MA (2006) Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J Agric Food Chem 54:7717–7723

    Article  CAS  PubMed  Google Scholar 

  • Su Q, Rowley KG, Itsiopoulos C, O’Dea K (2002) Identification and quantitation of major carotenoids in selected components of the Mediterranean diet: green leafy vegetables, figs and olive oil. Eur J Clin Nutr 56:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Teramoto M, Takaichi S, Inomata Y, Ikenaga H, Misawa N (2003) Structural and functional analysis of a lycopene beta-monocyclase gene isolated from a unique marine bacterium that produces myxol. FEBS Lett 545:120–126

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D (2003) Functional analysis of β- and ε-ring carotenoid hydroxylases in Arabidopsis. Plant Cell 15:1320–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinson JA (1999) The functional food properties of figs. Cereal Foods World 4:82–87

    Google Scholar 

  • Vinson JA, Zubik L, Bose P, Samman N, Proch J (2005) Dried fruits: excellent in vitro and in vivo antioxidants. J Am Coll Nutr 24:44–50

    Article  PubMed  Google Scholar 

  • Wirenga RK, Terpstra P, Hol WG (1986) Prediction of the occurrence of the ADP-binding β′β-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107

    Article  Google Scholar 

Download references

Acknowledgements

J. A.-G. is the recipient of an AECID scholarship from the Spanish Foreign Affairs Ministry. The authors thank Dr. Norihiko Misawa (Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University) for the gift of plasmid pACCRT-EIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás González Villa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araya-Garay, J.M., Feijoo-Siota, L., Veiga-Crespo, P. et al. cDNA cloning of a novel gene codifying for the enzyme lycopene β-cyclase from Ficus carica and its expression in Escherichia coli . Appl Microbiol Biotechnol 92, 769–777 (2011). https://doi.org/10.1007/s00253-011-3488-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3488-8

Keywords

Navigation