Skip to main content

Advertisement

Log in

Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biological efficiency of existing antimicrobial agents is still inadequate to ensure optimal therapeutic index. Developing biocompatible advanced functional materials with antimicrobial properties could be promising for environmentally benign applications. Nanoparticles and other nanoscale materials are of great interest due to their multiple potential applications in material science, medicine, and industry. Nanomaterials possess well renowned antimicrobial activity against several microorganisms; however, it has some non-specific toxicity. Biofunctionalization of nanomaterials is one such topic to address this issue. Rational selection of therapeutically active biomolecules for design of nanoparticles will certainly increase the biological applicability. The present paper describes the current status of different types of biofunctionalized nanoparticles and their antibacterial applications. Key principles such as strategies involved at bio-/nanointerface, the structural activity relationship, and mechanism of action involved in the antibacterial activity of functionalized nanoparticles are briefly discussed. This knowledge is important from the objective of generation of advanced functional nanomaterials with antimicrobial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amanulla MF, Kulandaivelu B, Morukattu G, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomed Nanotechnol 6:103–109

    Article  CAS  Google Scholar 

  • An J, Zhang H, Zhang J, Zhao Y, Yuan X (2009) Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid Polym Sci 287:1425–1434

    Article  CAS  Google Scholar 

  • Ashavani K, Praveen Kumar V, Pulickel MA, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mat 7:236–241

    Article  CAS  Google Scholar 

  • Avrahami D, Shai Y (2002) Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry 41:2254–2263

    Article  CAS  PubMed  Google Scholar 

  • Barza M (1994) Tissue directed antibiotic therapy: antibiotic dynamics in cells and tissues. Clin Infect Dis 19:910–915

    Article  CAS  PubMed  Google Scholar 

  • Batarseh KI (2004) Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J Antimicrob Chemoth 54:546–548

    Article  CAS  Google Scholar 

  • Bonoiu AC, Mahajan SD, Ding H, Roy I, Yong KT, Kumar R, Hu R, Bergey EJ, Schwartz SA, Prasad PN (2009) Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci USA 106:5546–5550

    Article  PubMed  PubMed Central  Google Scholar 

  • Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charusheela R (2010) Biological entities in stabilization of nanomaterials, A to Z of nanotechnology. Available at http://www.azonano.com/details.asp?ArticleId=2546. Accessed 23 March 2010

  • Chen CC, Lin IP, Wang CW, Tzeng HC, Wu CH, Chen YC, Chen CP, Chen LC, Wu YC (2006) DNA–gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128:3709–3715

    Article  CAS  PubMed  Google Scholar 

  • Christopher Decker L, Deuel DM, Sedlock DM (1989) Role of lipids in augmenting the antibacterial activity of benzoyl peroxide against Propionibacterium acnes. Antimicrob Agents Chemother 33:326–330

    Article  Google Scholar 

  • Christopher EB, Kyle CN, Elena AG, Barbara AH (2007) Formation of protein—metal oxide nanostructures by the sonochemical method: observation of nanofibers and nanoneedles. Langmuir 23:10342–10347

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Dietmar K, Dianping T, Reinhard N (2009) Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta 647:14–30

    Article  CAS  Google Scholar 

  • Drake DR, Brogden KA, Dawson DV, Wertz PW (2008) Antimicrobial lipids at the skin surface. J Lipid Res 49:4–11

    Article  CAS  PubMed  Google Scholar 

  • Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorgan Med Chem 17:2950–2962

    Article  CAS  Google Scholar 

  • Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. P Natl Acad Sci USA 91:664–668

    Article  CAS  Google Scholar 

  • Felnerova D, Viret JF, Gluck R, Moser C (2004) Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 15:518–529

    Article  CAS  PubMed  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim FN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  PubMed  Google Scholar 

  • Gaucher G, Marchessault RH, Leroux JC (2010) Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release 143:2–12

    Article  CAS  PubMed  Google Scholar 

  • Georgel PP, Crozat K, Lauth X, Makrantonaki E, Seltmann H, Sovath S, Hoebe K, Du X, Rutschmann S, Jiang Z, Bigby T, Nizet V, Zouboulis CC, Beutler B (2005) A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect Immun 73:4512–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germain RN (2001) The art of the probable: system control in the adaptive immune system. Science 293:240–245

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters 3:1261–1263

    Article  CAS  Google Scholar 

  • Guise V, Jaffray P, Delattre J, Puisieux F, Adolphe M, Couvreur P (1987) Comparative cell uptake of propidium iodide associated with liposomes or nanoparticles. Cell Molec Biol 33:397–405

    CAS  Google Scholar 

  • Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Heather RL, Shankar B, Sheetal P, Glenn RJ, Aleksandr LS (2007) Enzyme-encapsulated silica monolayers for rapid functionalization of a gold surface. Colloid Surf B 58:28–33

    Article  CAS  Google Scholar 

  • Ho C, Sheng HW (2010) A study of conjugation of FePt/ZnS nanocore-shell structure with different sequences of DNAs. In: 3rd International Nanoelectronics Conference (INEC), Electron Devices Society, Hong Kong, 3–8 January 2010

  • Holland KT, Ingham E, Cunliffe WJ (1981) A review, the microbiology of acne. J Appl Bacteriol 51:195–215

    Article  CAS  PubMed  Google Scholar 

  • Hongwei L, Jason HH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641

    Article  CAS  Google Scholar 

  • Huang WC, Tsai PJ, Chen YC (2009) Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria. Small 5:51–56

    Article  CAS  PubMed  Google Scholar 

  • Huguette PA, Antoine A, Patrick C (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agent 13:155–168

    Article  Google Scholar 

  • Jeong YI, Na HS, Seo DH, Kim DG, Lee HC, Jang MK, Na SK, Roh SH, Kim SI, Nah JW (2008) Ciprofloxacin-encapsulated poly(DL-lactide-co-glycolide) nanoparticles and its antibacterial activity. Inter J Pharm 352:317–323

    Article  CAS  Google Scholar 

  • Jia HF, Zhu GY, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84:406–414

    Article  CAS  PubMed  Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 33:6042–6108

    Article  CAS  Google Scholar 

  • Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater 16:452–455

    Article  CAS  PubMed  Google Scholar 

  • Kenneth ES, Erin BD, John FM, John Zhang Z (2008) Magnetic nanoparticle–peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 130:10258–10262

    Article  CAS  Google Scholar 

  • Le AT, Thi Tam L, Dinh Tam P, Huy PT, Huy TQ, Hieu NV, Kudrinskiy AA, Krutyakov YA (2010) Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mater Sci Eng C 30:910–916

    Article  CAS  Google Scholar 

  • Liao Y, Wang Y, Feng X, Wang W, Xu F, Zhang L (2010) Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization. Mater Chem Phys 121:534–540

    Article  CAS  Google Scholar 

  • Lihong L, Kaijin X, Huaying W, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang YY (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotech 4:457–463

    Article  CAS  Google Scholar 

  • Lopez SF, Kim HS, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR (2001) Antibacterial agents based on the cyclic D, L-alpha-peptide architecture. Nature 412:452–456

    Article  Google Scholar 

  • Luckarift HR, Dickerson MB, Sandhage KH, Spain JC (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2:640–643

    Article  CAS  PubMed  Google Scholar 

  • Lundeberg J, Larsen F (1995) Solid-phase technology: magnetic beads to improve nucleic acid detection and analysis. Biotechnol Annu Rev 1:373–401

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotech 18:33–37

    Article  CAS  Google Scholar 

  • Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNAnanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70:399–421

    Article  CAS  PubMed  Google Scholar 

  • Mazille F, Moncayo-Lassoa A, Spuhlerb D, Serrac A, Peralc J, Beniteza NL, Pulgarinb C (2010) Comparative evaluation of polymer surface functionalization techniques before iron oxide deposition. Activity of the iron oxide-coated polymer films in the photo-assisted degradation of organic pollutants and inactivation of bacteria. Chem Eng J 160:176–184

    Article  CAS  Google Scholar 

  • McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123:7626–7629

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R Jr, Janeway C (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    Article  CAS  PubMed  Google Scholar 

  • Merel P, Dupin B, Comeau F, Lacoste L, Vezon G (1996) Completely automated extraction of DNA from whole blood. Clin Chem 42:1285–1286

    Article  CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mat 8:543–557

    Article  CAS  Google Scholar 

  • Niemeyer M (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  • Niidome T, Nakashima K, Takahashi H, Niidome Y (2004) Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun 17:1978–1979

    Article  CAS  Google Scholar 

  • Nirmala Grace A, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloid Surf A 297:63–70

    Article  CAS  Google Scholar 

  • Niu M, Liu X, Dai J, Husheng J, Liqiao W, Bingshe X (2009) Antibacterial activity of chitosan coated Ag-loaded nano-SiO2 composites. Carbohyd Polym 78:54–59

    Article  CAS  Google Scholar 

  • Norman RS, Stone JW, Gole A, Murphy CJ, Attwood TLS (2008) Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8:302–306

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim JJ, Yang D (2005) Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17:359–365

    Article  CAS  PubMed  Google Scholar 

  • Oren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R (2002) Mode of membrane interaction and structure in micelles of a short a-helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Eur J Biochem 269:3869–3880

    Article  CAS  PubMed  Google Scholar 

  • Pangule RC, Brooks SJ, Zoica Dinu C, Bale SS, Salmon SL, Zhu G, Metzger DW, Kane RS, Dordick JS (2010) Antistaphylococcal nanocomposite films based on enzyme–nanotube conjucates. ACS Nano 4:3993–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappalardo JS, Quattrocchi V, Langellotti C, Giacomo SD, Gnazzo V, Olivera V, Calamante G, Zamorano PI, Levchenko TS, Torchilin VP (2009) Improved transfection of spleen-derived antigen-presenting cells in culture using TATp-liposomes. J Control Rel 134:41–46

    Article  CAS  Google Scholar 

  • Pasupuleti M, Roupe M, Rydengard V, Surewicz K, Surewicz WK, Chalupka A, Malmsten M, Sorensen OE, Schmidtchen A (2009) Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS ONE 4:e7358-1-11

    Google Scholar 

  • Patel MN, Patel SH, Chhasatia MR, Parmar PA (2008) Five-coordinated oxovanadium(IV) complexes derived from amino acids and ciprofloxacin: synthesis, spectral, antimicrobial, and DNA interaction approach. Bioorg Med Chem Lett 18:6494–6500

    Article  CAS  PubMed  Google Scholar 

  • Ping L, Juan L, Changzhu W, Qingsheng W, Li J (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912

    Article  CAS  Google Scholar 

  • Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2010) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28:207–213

    Article  CAS  PubMed  Google Scholar 

  • Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131:7609–7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohan S, Alexey V (2008) Charge-directed targeting of antimicrobial protein-nanoparticle conjugates. Biotechnol Bioeng 100:403–412

    Article  CAS  Google Scholar 

  • Rojo J, Díaz V, de la Fuente JM, Segura I, Barrientos AG, Riese HH, Bernade A, Penadés S (2004) Gold glyconanoparticles as new tools in antiadhesive therapy. Chembiochem 5:291–297

    Article  CAS  PubMed  Google Scholar 

  • Sadhasivam S, Shanmugam P, Yun KS (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloid Surf B 81:358–362

    Article  CAS  Google Scholar 

  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, Gänsbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109

    Article  CAS  PubMed  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Seoktae K, Moshe H, Debora FR, Menachem E (2008) Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24:6409–6413

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Subbiah R, Veerapandian M, Yun KS (2010) Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559–4577

    Article  CAS  PubMed  Google Scholar 

  • Sudhir K (1998) Preparation, characterization, and surface modification of silver particles. Langmuir 14:1021–1025

    Article  Google Scholar 

  • Swapna M (2008) Gold nanoparticle—biomolecule conjugates: Synthesis, properties, cellular interactions and cytotoxicity studies. Dissertation, University of Missouri, Columbia

  • Thanha NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230

    Article  CAS  Google Scholar 

  • Tian X, Michael K, Monty L, Lutz M, Benjamin G, Haibin S, Joanne IY, Jeffrey IZ, Andre EN (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  • Trewyn BG, Slowing I, Giri S, Chen H, Lin V (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res 40:846–853

    Article  CAS  PubMed  Google Scholar 

  • Tulkens PM (1991) Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis 10:100–106

    Article  CAS  PubMed  Google Scholar 

  • Turner JJ, Jones S, Fabani MM, Ivanova G, Arzumanov AA, Gait MJ (2007) RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol Dis 38:1–7

    Article  CAS  PubMed  Google Scholar 

  • Veerapandian M, Yun KS (2009) The state of the art in biomaterials as nanobiopharmaceuticals. Dig J Nanomater Bios 4:243–262

    Google Scholar 

  • Veerapandian M, Yun KS (2010) Synthesis of silver nanoclusters and functionalization with glucosamine for glyconanoparticles. Syn Reac Inorg Met Org Nano Met Chem 40:56–64

    CAS  Google Scholar 

  • Veerapandian M, Lim SK, Nam HM, Kuppannan G, Yun KS (2010) Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity. Anal Bioanal Chem 398:867–876

    Article  CAS  PubMed  Google Scholar 

  • Virender KS, Ria AY, Yekaterina L (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Castner DG, Ratner BD, Jiang S (2004) Probing the orientation of surface-immobilized immunoglobulin g by time-of-flight secondary ion mass spectrometry. Langmuir 20:1877–1887

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D, Gao CY (2006) Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces. Biomacromolecules 7:1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Hou W, Wei L, Jia H, Liu X, Xu B (2007) Antibacterial activity of nano-SiO2 antibacterial agent grafted on wool surface. Surf Coat Tech 202:460–465

    Article  CAS  Google Scholar 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133:835–845

    Article  CAS  PubMed  Google Scholar 

  • Wen-Li D, Shan NS, Lei XY, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohyd Polym 75:385–389

    Article  CAS  Google Scholar 

  • Wen-Ru L, Xiao-Bao X, Qing-Shan S, Hai-Yan Z, You-Sheng OY, Yi-Ben C (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122

    Article  CAS  Google Scholar 

  • Wiethoff CM, Middaugh CR (2003) Barriers to nonviral gene delivery. J Pharm Sci 92:203–217

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou M (2008) Antimicrobial gelatin nanofibers containing silver nanoparticles. Fiber Polym 9:685–690

    Article  CAS  Google Scholar 

  • Yamamoto M, Nakamoto M (2003) Novel preparation of monodispersed silver nanoparticles via amine adducts derived from insoluble silver myristate in tertiary alkylamine. J Mater Chem 13:2064–2065

    Article  CAS  Google Scholar 

  • Yang H, Zhang S, Chen X, Zhuang Z, Xu J, Wang X (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76:1316–1321

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Qu L, Wimbrow A, Jiang X, Sun YP (2007) Enhancing antimicrobial activity of lysozyme against Listeria monocytogenes using immunonanoparticles. J Food Prot 70:1844–1849

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20:085102-1-7

    Google Scholar 

  • Yeh P, Perricaudet M (1997) Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J 11:615–623

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Godbey WT (2006) Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev 58:515–534

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu CMJ, Huang CM (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    Article  CAS  PubMed  Google Scholar 

  • Zhisong L, Chang ML, Haifeng B, Yan Q, Yinghui T, Xu Y (2008) Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24:5445–5452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Kyungwon University Research Fund in 2011. (KWU-2011-R086)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyusik Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veerapandian, M., Yun, K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol 90, 1655–1667 (2011). https://doi.org/10.1007/s00253-011-3291-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3291-6

Keywords

Navigation