Skip to main content
Log in

Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Forisomes are mechanoproteins that undergo ATP-independent contraction–expansion cycles triggered by divalent cations, pH changes, and electrical stimuli. Although native forisomes from Medicago truncatula comprise a number of subunits encoded by separate genes, here we show that at least two of those subunits (MtSEO1 and MtSEO4) can assemble into homomeric forisome bodies that are functionally similar to their native, multimeric counterparts. We expressed these subunits in plants and yeast, resulting in the purification of large quantities of artificial forisomes with unique characteristics depending on the expression platform. These artificial forisomes were able to contract and expand in vitro like native forisomes and could respond to electrical stimulation when immobilized between interdigital transducer electrodes. These results indicate that recombinant artificial forisomes with specific characteristics can be prepared in large amounts and used as components of microscale and nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberti S, Gitler AD, Lindquist S (2007) A suite of Gateway cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24:913–919

    Article  CAS  Google Scholar 

  • Arsanto JP (1982) Observations on P-protein in dicotyledons. Substructural and developmental features. Am J Bot 69:1200–1212

    Article  CAS  Google Scholar 

  • Behnke HD (1991) Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bull 12:143–175

    Google Scholar 

  • Browne WR, Feringa BL (2006) Making molecular machines work. Nature Nanotech 1:25–35

    Article  CAS  Google Scholar 

  • D'Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48:857–872

    Article  Google Scholar 

  • Dohmen RJ, Strasser AW, Höhner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    Article  CAS  Google Scholar 

  • Esau K (1969) The phloem. Borntraeger, Stuttgart

    Google Scholar 

  • Esau K (1978) Developmental features of the primary phloem in Phaseolus vulgaris L. Ann Bot 42:1–13

    Google Scholar 

  • Furch ACU, Hafke JB, Schulz A, van Bel AJE (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838

    Article  CAS  Google Scholar 

  • Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28:5068–5073

    Article  CAS  Google Scholar 

  • Huck WTS (2008) Responsive polymers for nanoscale actuation. Materials Today 11:24–32

    Article  CAS  Google Scholar 

  • Jaeger M, Uhlig K, Clausen-Schaumann H, Duschl C (2008) The structure and functionality of contractile forisome protein aggregates. Biomaterials 29:247–256

    Article  CAS  Google Scholar 

  • Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377–1400

    Article  CAS  Google Scholar 

  • Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell 13:1221–1230

    Article  CAS  Google Scholar 

  • Knoblauch M, Noll GA, Müller T, Prüfer D, Schneider-Hüther I, Scharner D, van Bel AJE, Peters WS (2003) ATP-independent contractile proteins from plants. Nat Mater 2:600–603, Erratum in Nature Mater 4:353

    Article  CAS  Google Scholar 

  • Kyle S, Aggeli A, Ingham E, McPherson MJ (2009) Production of self-assembling biomaterials for tissue engineering. Biomaterials 28:5068–5073

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lawton DM (1978a) Ultrastructural comparison of the tailed and tailless P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron microscopy. Protoplasma 97:1–11

    Article  CAS  Google Scholar 

  • Lawton DM (1978b) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed in glutaraldehyde. Ann Bot 42:353–361

    Google Scholar 

  • Mavroidis C, Dubey A (2003) Biomimetics: from pulses to motors. Nat Mater 2:573–574

    Article  CAS  Google Scholar 

  • Montemagno C, Bachand G (1999) Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10:225–231

    Article  CAS  Google Scholar 

  • Mrazek A (1910) Über geformte eiweißartige Inhaltskörper bei den Leguminosen. Österr Botan Zeitschrift 60:218–230

    Article  Google Scholar 

  • Nakayama S, Kretsinger H (1994) Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct 23:473–507

    Article  CAS  Google Scholar 

  • Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci 5:2375–2390

    Article  CAS  Google Scholar 

  • Noll GA (2005) Molekularbiologische Charakterisierung der Forisome. Dissertation, Justus-Liebig Universität, Gießen, Germany

  • Noll GA, Fontanellaz ME, Rüping B, Ashoub A, van Bel AJE, Fischer R, Knoblauch M, Prüfer D (2007) Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol 65:285–294

    Article  CAS  Google Scholar 

  • Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426

    Article  Google Scholar 

  • Pélissier HC, Peters WS, Collier R, van Bel AJE, Knoblauch M (2008) GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes. Plant Cell Physiol 49:1699–1710

    Article  Google Scholar 

  • Peters WS, Schnetter R, Knoblauch M (2007) Reversible birefringence suggests a role for molecular self-assembly in forisome contractility. Funct Plant Biol 34:302–306

    Article  CAS  Google Scholar 

  • Pickard WF, Knoblauch M, Peters WS, Shen AQ (2006) Prospective energy densities in the forisome, a new smart material. Mater Sci Eng C 26:104–112

    Article  CAS  Google Scholar 

  • Rizo J, Südhof TC (1998) C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem 273:15879–15882

    Article  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  Google Scholar 

  • Schwan S, Fritzsche M, Cismak A, Noll G, Prüfer D, Spohn U, Heilmann A (2006) Micromechanical measurements on chemo-mechanical protein aggregates. Materials Research Society USA, Proceedings of the Fall Meeting, Boston, 27–30.11., 09750-DD-03-10

  • Schwan S, Fritzsche M, Cismak A, Heilmann A, Spohn U (2007) In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates (forisomes). Biophys Chem 125:444–452

    Article  CAS  Google Scholar 

  • Schwan S, Menzel M, Fritzsche M, Heilmann A, Spohn U (2009) Micromechanical measurements on P-protein aggregates (forisomes) from Vicia faba plants. Biophys Chem 139:99–105

    Article  CAS  Google Scholar 

  • Swairjo MA, Seation BA (1994) Annexin structure and membrane interactions: a molecular perspective. Annu Rev Biophys Biomol Struct 23:193–213

    Article  CAS  Google Scholar 

  • Tuteja N, Umate P, van Bel AJE (2010) Forisomes: calcium-powered protein complexes with potential as ‘smart’ biomaterials. Trends Biotechnol 28:102–110

    Article  CAS  Google Scholar 

  • Uhlig K, Jaeger MS, Lisdat F, Duschl C (2008) Biohybrid microfluidic valve based on forisome protein complexes. J Microelectromech Syst 17:1322–1328

    Article  CAS  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  CAS  Google Scholar 

  • Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  Google Scholar 

  • Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71:365–388

    Article  Google Scholar 

  • Zhang S, Marini DM, Hwang W, Santoso S (2002) Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 6:865–871

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical assistance of Ann-Christin Müller. This work was partially supported by grants from the Bundesministerium für Forschung und Bildung (0312014B), the Fraunhofer MAVO program “Smart Plastics” and the VolkswagenStiftung, contract no. I/82 075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Prüfer.

Additional information

Boje Müller and Gundula A. Noll contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie of yeast-derived forisomes changing their conformation due to electrotitration (MPG 982 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, B., Noll, G.A., Ernst, A.M. et al. Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices. Appl Microbiol Biotechnol 88, 689–698 (2010). https://doi.org/10.1007/s00253-010-2771-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2771-4

Keywords

Navigation