Skip to main content
Log in

Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In microbial fuel cells (MFC), wastewater is used as a fuel while organic and nutrient pollution in the wastewater are being treated. In the present study, commonly existing microbial populations in MFC anode biofilms were identified using high throughput FLX Titanium pyrosequencing to provide much more extensive information of anode microbial communities than previously possible. Using 454 FLX Titanium pyrosequencing, 31,901 sequence reads with an average length of 430 bp were obtained from 16S rRNA gene amplicons from different MFC anodes with different substrate exposure and respiration conditions, and microbial community structure and population identification were then analyzed using high-throughput bioinformatics methods. Although community profiles from the four samples were significantly different, hierarchical clustering analysis revealed several bacterial populations that commonly exist in the anode biofilm samples. These bacteria were phylogenetically distributed in Firmicutes and the alpha-, beta-, gamma-, and delta-subclasses of Proteobacteria. In addition, most of these populations were found to be novel anode bacteria and exhibited oligotrophic or substrate-concentration-insensitive growth. These findings suggest that commonly existing anode bacteria may play a key role in the stable operations of MFCs, combined with wastewater treatment plants, under fluctuating substrate and respiration conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–94

    Article  CAS  Google Scholar 

  • Back JH, Kim MS, Cho H, Chang IS, Lee JY, Kim KS, Kim BH, Yi P, Han YS (2004) Construction of bacterial artificial chromosome library from eletrochemical microorganisms. FEMS Microbiol Lett 238:65–70

    Article  CAS  Google Scholar 

  • Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, Russ C, Lander ES, Nusbaum C, Jaffe DB (2009) Quality scores and SNP detection in sequencing-by-synthesis system. Genome Res 18:763–770

    Article  Google Scholar 

  • Cardenas E, Cole JR, Tiedje JM, Park J (2009) Microbial community analysis using RDP-II (Ribosomal Database Project II) methods, tools and new advances. Environ Eng Res 14:3–9

    Article  Google Scholar 

  • Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525

    Article  CAS  Google Scholar 

  • Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW (2008) Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79:379–388

    Article  CAS  Google Scholar 

  • Chung K, Okabe S (2009) Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Appl Microbiol Biotechnol 83:965–977

    Article  CAS  Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, de Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen DM, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2008) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37:141–145

    Article  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16 S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1732–1797

    Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  Google Scholar 

  • Hamp TJ, Jones WJ, Fodor AA (2009) Effects of experimental choices and analysis noise on surveys of the “rare biosphere”. Appl Environ Microbiol 75:3263–3270

    Article  CAS  Google Scholar 

  • He Z, Minteer SD, Angenent AT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267

    Article  CAS  Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    Article  Google Scholar 

  • Ishii S, Shimoyama T, Hotta Y, Watanabe K (2008) Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol 8:6

    Article  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:5–9

    Article  Google Scholar 

  • Jung SH, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77:393–402

    Article  CAS  Google Scholar 

  • Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ, Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63:2266–2272

    Google Scholar 

  • Ki D, Park J, Lee J, Yoo K (2008) Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity in microbial fuel cells. Water Sci Technol 58:2195–2201

    Article  CAS  Google Scholar 

  • Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63:672–681

    Article  CAS  Google Scholar 

  • Kim GT, Webster G, Wimpenny JWT, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101:698–710

    Article  CAS  Google Scholar 

  • Kim JR, Cheng S, Oh SE, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009

    Article  CAS  Google Scholar 

  • Kim BS, Kim BK, Lee JH, Kim M, Lim YW, Chun J (2008a) Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing. J Microbiol 46:357–363

    Article  CAS  Google Scholar 

  • Kim IS, Chae KJ, Choi MJ, Verstraete W (2008b) Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation. Environ Eng Res 13:51–65

    Article  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  Google Scholar 

  • Lee JY, Phung NT, Chang IS, Kim BH, Sung HC (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16 S rDNA analyses. FEMS Microbiol Lett 223:185–191

    Article  CAS  Google Scholar 

  • Liu H, Ramanathan R, Bruce EL (2004) Production of electricity during wastewater treatment using a single chamber microbial cell. Environ Sci Technol 38:2281–2285

    Article  CAS  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952

    Article  CAS  Google Scholar 

  • Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  CAS  Google Scholar 

  • Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Microbiol 19:564–571

    CAS  Google Scholar 

  • McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML (2009) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol (in press)

  • Moosvi SA, Pacheco CC, McDonald IR, De Marco P, Pearce DA, Kelly DP, Wood AP (2005) Isolation and properties of methanesulfonate-degrading Afipia felis from Antarctica and comparison with other strains of A. felis. Environ Microbiol 7:22–33

    Google Scholar 

  • Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jorgensen BB, Kuypers MMM (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA 105:17861–17866

    Article  CAS  Google Scholar 

  • Parameswaran P, Zhang H, Torres CI, Rittmann BE, Krajmalnik-Brown R (2010) Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers. Biotec Bioeng 105:69–78

    Article  CAS  Google Scholar 

  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16 S rDNA sequences. FEMS Microbiol Lett 233:77–82

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  CAS  Google Scholar 

  • Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18

    Article  CAS  Google Scholar 

  • Reimers CE, Stecher HA 3rd, Westall JC, Alleau Y, Howell KA, Soule L, White HK, Girguis PR (2007) Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton. Appl Environ Microbiol 73:7029–7040

    Article  CAS  Google Scholar 

  • Saldanha AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  CAS  Google Scholar 

  • Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, Fodor AA, Clinton SM (2009) Molecular diversity of a North Carolina wastewater treatment plant as revealed by pyrosequencing. Appl Microbiol Biotechnol 75:1688–1696

    CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  Google Scholar 

  • Szczepanowski R, Bekel T, Goesmann A, Krause L, Kromeke H, Kaiser O, Eichler W, Puhler A, Schluter A (2008) Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 136:54–64

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • White HK, Reimers CE, Cordes EE, Dilly GF, Girguis PR (2009) Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. ISME J 3:635–646

    Article  Google Scholar 

  • Wolcott RD, Gontcharova V, Sun Y, Dowd SE (2009) Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and Titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol 9:226

    Article  Google Scholar 

  • Zhang H, Banaszak JE, Parameswaran P, Alder J, Krajmalnik-Brown R, Rittmann BE (2009) Focused-pulsed sludge pre-treatment increase the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Res 43:4517–4526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (R33-2008-000-10076-0). We thank Dr. James M. Tiedje for his review and advice towards greatly improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonhong Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Schematic diagram of JM MFC reactor (DOC 133 kb)

Supplementary Figure 2

Schematic diagram of PM MFC reactor (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.K., Van Doan, T., Yoo, K. et al. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing. Appl Microbiol Biotechnol 87, 2335–2343 (2010). https://doi.org/10.1007/s00253-010-2680-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2680-6

Keywords

Navigation