Skip to main content

Advertisement

Log in

Biogas production: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Anaerobic digestion of energy crops, residues, and wastes is of increasing interest in order to reduce the greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation and as a vehicle fuel. For biogas production, various process types are applied which can be classified in wet and dry fermentation systems. Most often applied are wet digester systems using vertical stirred tank digester with different stirrer types dependent on the origin of the feedstock. Biogas is mainly utilized in engine-based combined heat and power plants, whereas microgas turbines and fuel cells are expensive alternatives which need further development work for reducing the costs and increasing their reliability. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way. The digestate from anaerobic fermentation is a valuable fertilizer due to the increased availability of nitrogen and the better short-term fertilization effect. Anaerobic treatment minimizes the survival of pathogens which is important for using the digested residue as fertilizer. This paper reviews the current state and perspectives of biogas production, including the biochemical parameters and feedstocks which influence the efficiency and reliability of the microbial conversion and gas yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdoun E, Weiland P (2009) Optimization of monofermentation from renewable raw materials by the addition of trace elements. Bornimer Agrartechnische Berichte 68:69–78

    Google Scholar 

  • Ahrens T, Weiland P (2007) Biomethane for future mobility. Landbauforschung Völkenrode 57:71–79

    Google Scholar 

  • Ahring BK, Sandberg M, Angelidaki I (1995) Volatile fatty acids as indicators of process imbalance in anaerobic digesters. Appl Microbiol Biotechnol 34:559–565

    Article  Google Scholar 

  • Amon T, Hackl E, Jeremic D, Amon B, Boxberger J (2001) Biogas production from animal wastes, energy plants and organic wastes. In: van Velsen A, Verstraete W (Eds) Proc. 9th World Congress on Anaerobic Digestion pp 381–386

  • Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Boriroza V, Hrbek R, Friedel J, Pötsch E, Wagentristel H, Schreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crop grown in sustainable crop rotations. Bioresour Technol 98:3204–3212

    Article  CAS  Google Scholar 

  • Andara AR, Esteban JMB (1999) Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries. Biomass Bioenergy 17:435–443

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42:159–166

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372

    Article  CAS  Google Scholar 

  • Angelidaki I Ellegaard L, Ahring B (2003) Application of the anaerobic digestion process. In: Biomethanation II, Adv. Biochem Eng/Biotechnol, Springer, pp 2–33

  • Bagi Z, Acs N, Balint B, Hovrath L, Dobo K, Perei KR, Rakhely G, Kovacs KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482

    Article  CAS  Google Scholar 

  • Banemann D, Nelles M (2009) Von der Ernte bis in den Fermenter. VDI-Ber 2057:29–46

    Google Scholar 

  • Baserga U (1998) Landwirtschaftliche Co-Vergärungs-Biogasanlagen, FAT-Berichte No. 512, Tänikon/Switzerland

  • Bendixen HJ (1999) Hygienic safty –results of scientific investigations in Denmark Sanitation requirements in Danish BGPs. In: Böhm R, Wellinger A (Eds.), Hygienic and Environmental Aspects of Anaerobic Digestion, Stuttgart pp. 27–47

  • Bischoff M (2009) Erkenntnisse beim Einsatz von Zusatz- und Hilfsstoffen sowie von Spurenelementen in Biogasanlagen. VDI-Ber 2057:111–123

    Google Scholar 

  • Biswas L, Chowdhury R, Battacharya P (2007) Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues. Biomass Bioenergy 31:80–86

    Article  CAS  Google Scholar 

  • Boe K, Bastone DJ, Angelidaki I (2005) Online headspace chromatographic method for measuring VFA in biogas reactor. Water Sci Technol 52:473–478

    CAS  Google Scholar 

  • Brauer A, Weiland P (2009) Kontinuierliche Wasserstoffmessung zur Beurteilung der Prozessstabilität von Fermentationsversuchen. VDI_Berichte 2057:2237–2247

    Google Scholar 

  • Braun R (1982) Biogas-Methangärung organischer Abfallstoffe, Springer Wien

  • Braun R (2007) Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, Dordrecht pp. 335–415

    Chapter  Google Scholar 

  • Braun R (2009) Biogas from energy crop digestion. IEA Task 37 Brochure, International Energy Agency, Paris, France

  • Busch G, Großmann J, Sieber M, Burckhardt M (2009) A new and sound technology for biogas from solid waste and biomass. Water Air Soil Pollut Focus 9:89–97

    Article  CAS  Google Scholar 

  • De Baere L, Mattheeuws B (2008) State-of-the-art 2008—anaerobic digestion of solid waste. Waste Management World 9:1–8

    Google Scholar 

  • Döhler H, Eckel H, Frisch J (2006) Energiepflanzen. KTBL, Darmstadt

    Google Scholar 

  • Dornack C (2009) Stickstoff in Biogasanlagen. VDI-Ber 2057:155–171

    Google Scholar 

  • Driehuis F, Elferink SJ, Spoelstra SF (1999) Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J Appl Microbiol 87:583–594

    Article  Google Scholar 

  • EC No. 1774 (2002) Health rules concerning animal-by-products not intended for human consumption

  • Elferink SJWH, van Lis R, Heilig HGHJ, Akkermans ADL, Stams AJM (1998) Detection and quantification of microorganisms in anaerobic bioreactors. Biodegradation 9:169–177

    Article  Google Scholar 

  • EurObserv’er Report (2008) The state of renewable energies in Europe pp 47–51

  • Fachverband Biogas (2009) Biogas dezentral erzeugen, regional profitieren, international gewinnen. In. Proc. 18. Jahrestagung des Fachverbandes Biogas, Hannover

  • FNR (2008) Biogas Basisdaten Deutschland. Fachagentur Nachwachsende Rohstoffe, Gülzow

    Google Scholar 

  • Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K, Schmitz J (2008) Kriterien einer nachhaltigen Bioenergienutzung im globalen Maßstab. UBA-Forschungsbericht 206:41–112

    Google Scholar 

  • Friedmann H, Kube J (2008) Optimierung der Biogasproduktion aus nachwachsenden Rohstoffen durch den Einsatz von Mikronährstoffen–ein Erfahrungsbericht. In: Tagungsband 17. Jahrestagung des Fachverbandes Biogas, Nürnberg, pp 125–130

  • Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modeling of anaerobic digestion processes. In: Biomethanation I, Scheper T, Ahring BK (eds.), Springer, Berlin

  • Gemmeke B, Rieger C, Weiland P (2009) Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. FNR, Gülzow

    Google Scholar 

  • Gerardi M H (2003) The microbiology of anaerobic digesters. Wiley

  • Gerhardt M (2007) The use of hydrolytic enzymes in agricultural biogas production. In: Progress in Biogas, Stuttgart-Hohenheim, pp 247–254

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  • Heiermann M, Linke B, Look R, Kessler UI (2007) Biogas from renewable resources through dry anaerobic digestion. Landtechnik 62:14–15

    Google Scholar 

  • IEA (2006) World Energy Outlook. International Energy Agency, Paris

    Google Scholar 

  • IPCC (2000) Special report on emission scenarios, Intergovernmental Panel on Climate Change

  • Jarvis A, Nordberg A, Jarlsvik T, Mathisen B, Svensson BH (1997) Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenergy 12:453–460

    Article  CAS  Google Scholar 

  • Kaiser F (2004) Untersuchung der Wirkung von MethaPlus auf die Vergärung von Maissilage im Laborfermenter. Bayerische Landesanstalt für Landwirtschaft (LfL)

  • Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage. Renew Energy 30:1195–1202

    Article  CAS  Google Scholar 

  • Karakashev D, Bastone D, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:331–338

    Article  CAS  Google Scholar 

  • Karpenstein-Machan (2005) Energiepflanzenbau für Biogasanlagenbetreiber. DLG-Verlag, Frankfurt

  • Kim J, Park C, KimTH LM, Kim S, Lee SW (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275

    CAS  Google Scholar 

  • Klocke M, Nettmann E, Bergmann I, Mundt K, Souidiu K, Mumme J, Linke B (2008) Characterization of the methanogenic Archea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 31:190–205

    Article  CAS  Google Scholar 

  • Klocke M, Nettmann E, Bergmann I (2009) Monitoring der methanbildenden Mikroflora in Praxis-Biogasanlagen im ländlichen Raum: Analyse des Ist-Zustandes und Entwicklung eines quantitativen Nachweissystems. Bornimer Agrartechnische Berichte No. 67

  • Kroiss H (1985) Anaerobe Abwasserreinigung. Wiener Mitteilungen 62:65–68

  • KTBL/FNR (2007) Faustzahlen Biogas. Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt, pp 49–51

  • Kusch S, Oechsner H, Jungbluth T (2005) Vergärung landwirtschaftlicher Substrate in diskontinuierlichen Feststofffermentern. Agrartechnische Forschung 11:81-91LfU/2007) Biogashandbuch Bayern–Materialband. Bayerisches Landesamt für Umwelt, Augsburg

  • Lehmann T (2008) Biogasanlagenbau–auf den Aufschluss kommt es an. Biogas 2008, Proc. Innovations Kongress, Osnabrück, pp 14–23

  • Lethomäki A (2006) Biogas production from energy crops and crop residues. Jyväsk Stud Biol Environ Sci 163:1–91

    Google Scholar 

  • Leven L, Eriksson ARB, Schnürer A (2007) Effect of process temperature on bacterial and archael communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

    Article  CAS  Google Scholar 

  • Linke B (2006) Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 30:892–896

    Article  CAS  Google Scholar 

  • Lossie U, Pütz P (2008) Targeted control of biogas plants with the help of FOS/TAC. Practice Report Hach-Lange

  • Mähnert P (2007) Kinetik der Biogasproduktion aus nachwachsenden Rohstoffen und Gülle. Dissertation Humboldt-Universität Berlin, 202 p

  • Miltner M, Makaruk A, Bala H, Harasek M (2009) Biogas upgrading for transportation purposes—operational experiences with Austria's first bio-CNG fuelling station. Chem Eng Trans 18:617–622

    Google Scholar 

  • Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK (2006) Thermal pretreatment of the solid fraction of manure: impact of the biogas reactor performance and microbial community. Water Sci Technol 53:59–67

    CAS  Google Scholar 

  • Morgavi DP, Beauchemin KA, Nsereko LM (2001) Resistance of feed enzymes to proteolytic inactivation by rumen microorganisms and gastrointestinal proteases. J Anim Sci 79:1621–1630

    CAS  Google Scholar 

  • Mösche M, Jördening HJ (1999) Comparison of different models of substrate and product inhibition in anaerobic digestion. Water Res 33:2545–2554

    Article  Google Scholar 

  • Mshandete A, Bjornsson L, Kivaisi AK, Rubindamayugi MST, Matthiasson B (2006) Effect of particle size on biogas yield from sisal fibre waste. Renew energy 31:2385–2392

    Article  CAS  Google Scholar 

  • Müller J et al (2003) Thermische, chemische und biochemische Desintegrationsverfahren. Korresp Abwasser 50:796–804

    Google Scholar 

  • Nickel K (2008) Mehr Biogas durch Ultraschallbehandlung—erster Bericht aus der Praxis. Biogas 2008, Proc. Innovations Kongress, Osnabrück, 96–102

  • Nielsen HB, Agelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99:7995–8001

    Article  CAS  Google Scholar 

  • Nielsen HB, Uellendahl H, Ahring BK (2007) Regulation and optimization of the biogas process: propionate as a key factor. Biomass Bioenergy 31:820–830

    Article  CAS  Google Scholar 

  • Oechsner H, Lemmer A (2009) Was kann die Hydrolyse bei der Biogasvergärung leisten? VDI-Ber 2057:37–46

    Google Scholar 

  • Parawira W, Read JS, Mattiasson B, Björnsson L (2008) Energy production from agricultural residues: high methane yields in a pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32:44–50

    Article  CAS  Google Scholar 

  • Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. Brochure of IEA Task 37 “Energy from Biogas and Landfill Gas”

  • Petersson A (2008) New biogas upgrading processes. Brochure of IEA Task 37 “Energy from Biogas and Landfill Gas”

  • Polster A, Brummack J (2009) Entschwefelung von Biogasanlagen. VDI-Berichte 2057:185–193

  • Prechtel S, Anzer T, Schneider R, Faulstich M (2004) Biogas production from substrates with high amounts of organic nitrogen. In: Proc. 10th World Congress—Anaerobic Digestion 2004, Montreal, pp 1809–1812

  • Preißler D, Lemmer A, Oechsner H, Jungbluth T (2009) Die Bedeutung der Spurenelemente bei der Ertragssteigerung und Prozessstabilisierung. In: Proc. 18. Jahrestagung des Fachverbandes Biogas, Hannover, pp 123–126

  • Rieger C, Weiland P (2006) Prozessstörungern frühzeitig erkennen. Biogas J 4:18–20

    Google Scholar 

  • Romano RT, Zhang R, Teter S, McGarry JA (2009) The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresour Technol 100:4564–4571

    Article  CAS  Google Scholar 

  • Sahlström L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 87:161–166

    Article  Google Scholar 

  • Schimpf U, Valbuena R (2009) Increase in efficiency of biomethanation by enzyme application. Bornimer Agrartechnische Berichte 68:44–56

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  Google Scholar 

  • Schmid J, Krautkremer B, Müller J (2005) Biogas-powered micro-gas-turbine. Proc. Expo World Conference on Wind Energy, Renewable Energy and Fuel Cells, Hamamatsu/Japan, 7.-10.6.2005

  • Schneider R, Quicker P, Anzer T, Prechtl S, Faulstich M (2002) Grundlegende Untersuchungen zur effektiven, kostengünstigen Entfernung von Schwefelwasserstoff aus Biogas. In: Biogasanlagen Anforderungen zur Luftreinhaltung, Bayerisches Landesamt für Umweltschutz, Augsburg

  • Schön M (1994) Verfahren zur Vergärung organischer Rückstände in der Abfallwirtschaft. Erich Schmidt Verlag, Berlin

    Google Scholar 

  • Schulte-Schulze Berndt A (2005) Biogas upgrading with pressure swing adsorption versus biogas reforming. In: Lens P, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells. IWA Publishing, pp 414–429

  • Schulz H, Eder B (2001) Biogas-Praxis. Grundlagen–Planung–Anlagenbau. Ökobuchverlag, Staufen bei Freiburg

  • Stabnikova O, Liu XY, Wang JY, Ivanov V (2006) Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl Nicrobiol Biotechnol 73:696–702

    Article  CAS  Google Scholar 

  • Strauch D, Philipp W (2000) Hygieneaspekte der biologischen Abfallbehandlung und –verwertung. In: Bidlingmaier W (ed) Biologische Abfallbehandlung. Eugen Ulmer, Stuttgart, pp 155–208

    Google Scholar 

  • Vieitez ER, Gosh S (1999) Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass Bioenergy 16:299–309

    Article  CAS  Google Scholar 

  • Wang QH, Kuninobu M, Ogawa H, Kato Y (1999) Degradation of volatile fatty in highly efficient anaerobic digestion. Biomass Bioenergy 16:407–416

    Article  CAS  Google Scholar 

  • Weiland P (2006) Stand der Technik bei der Trockenfermentation. Gülzower Fachgespräche 24:22–38

    Google Scholar 

  • Weiland P (2008a) Trockenfermentation in der Landwirtschaft-Welche Substrate und Techniken finden Anwendung. In: Bilitewski B, Werner P, Dornack C, StegmannR, Rettenberger G, Faulstich M, Wittmaier M (eds) Anaerobe biologische Abfallbehandlung, Dresden, pp 235–245

  • Weiland P (2008b) Wichtige Messdaten für den Prozessablauf und Stand der Technik in der Praxis. Gülzower Fachgespräche 27:17–31

    Google Scholar 

  • Weiland P, Verstraete W, van Haandel A (2009) Biomass digestion to methane in agriculture: A successful pathway for the energy production and waste treatment worldwide. In: Soetaert W, Vandamme E J (eds) Biofuels, Wiley, pp 171–195

  • Weinberg ZG, Muck RE, Weimer PJ (2003) The survival of silage inocculent lactic acid bacteria in rumen fluid. J Appl Biochem 93:1066–1071

    Google Scholar 

  • Wempe J, Dumont M (2008) Lets give full Gas! New Gas Platform, Green Gas Working Group, Netherland

  • Wünsche K (2008) Praxiserfahrungen drucklose Aminwäsche. Proc. Biogas upgrading to biomethane, 6th Hanauer Dialog, pp 136–145

  • Yu Y, Lee C, Kim J, Hwangs S (2005) Group specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679

    Article  CAS  Google Scholar 

  • Zubr J (1986) Methanogenic fermentation of fresh and ensiled plant materials. Biomass 11:159–171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Weiland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiland, P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85, 849–860 (2010). https://doi.org/10.1007/s00253-009-2246-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2246-7

Keywords

Navigation