Skip to main content
Log in

Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

C-phycocyanin (C-PC) is a blue pigment in cyanobacteria, rhodophytes and cryptophytes with fluorescent and antioxidative properties. C-PC is presently extracted from open pond cultures of the cyanobacterium Arthrospira platensis although these cultures are not very productive and open for contaminating organisms. C-PC is considered a healthy ingredient in cyanobacterial-based foods and health foods while its colouring, fluorescent or antioxidant properties are utilised only to a minor extent. However, recent research and developments in C-PC synthesis and functionality have expanded the potential applications of C-PC in biotechnology, diagnostics, foods and medicine: The productivity of C-PC has been increased in heterotrophic, high cell density cultures of the rhodophyte Galdieria sulphuraria that are grown under well-controlled and axenic conditions. C-PC purification protocols based on various chromatographic principles or novel two-phase aqueous extraction methods have expanded in numbers and improved in performance. The functionality of C-PC as a fluorescent dye has been improved by chemical stabilisation of C-PC complexes, while protein engineering has also introduced increased stability and novel biospecific binding sites into C-PC fusion proteins. Finally, our understanding of the physiological functions of C-PC in humans has been improved by a mechanistic hypothesis that links the chemical properties of the phycocyanobilin chromophores of C-PC to the natural antioxidant, bilirubin, and may explain the observed health benefits of C-PC intake. This review outlines how C-PC is produced and utilised and discusses the novel C-PC synthesis procedures and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abalde J, Betancourt L, Torres E, Cid A, Barwell C (1998) Purification and characterization of phycocyanin from marine cyanobacterium Synechococcus sp. IO9201. Plant Sci 136:109–120

    Article  CAS  Google Scholar 

  • Adir N, Dobrovetsky Y, Lerner N (2001) Structure of c-phycocyanin from thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: structural implications for thermal stability in phycobilisome assembly. J Mol Biol 313:71–81

    CAS  PubMed  Google Scholar 

  • Adir N, Vainer R, Lerner N (2002) Refined structure of c-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 Å: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim Biophys Acta 1556:168–174

    CAS  PubMed  Google Scholar 

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69:114–120

    CAS  Google Scholar 

  • Atanasiu R, Stea D, Mateescu MA, Vergely C, Dalloz F, Briot F, Maupoil V, Nadeau R, Rochette L (1998) Direct evidence of caeruloplasmin antioxidant properties. Mol Cell Biochem 189:127–135

    CAS  PubMed  Google Scholar 

  • Batista AP, Raymundo A, Sousa I, Empis J (2006) Rheological characterization of coloured oil-in-water food emulsions with lutein and phycocyanin added to the oil and aqueous phases. Food Hydrocoll 20:44–52

    CAS  Google Scholar 

  • Belknap WR, Haselkorn R (1987) Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena. EMBO J 6:871–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benedetti S, Benvenutti F, Pagliarani S, Francogli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue-green alga Aphanizomenon flos-aquae. Life Sci 75:2353–2362

    CAS  PubMed  Google Scholar 

  • Benedetti S, Rinalducci S, Benvenuti F, Francogli S, Pagliarani S, Giorgi L, Micheloni M, D’Amici GM, Zolla L, Canestrari F (2006) Purification and characterization of phycocyanin from blue-green alga Aphanizomenon flos-aquae. J Chromatogr B 833:12–18

    CAS  Google Scholar 

  • Bermejo P, Piñero E, Villar ÁM (2008) Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulina platensis. Food Chem 110:436–445

    CAS  PubMed  Google Scholar 

  • Bhat VB, Madyastha KM (2000) C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Comm 275:20–25

    CAS  PubMed  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  Google Scholar 

  • Boussiba S, Richmond AE (1979) Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch Microbiol 12:155–159

    Google Scholar 

  • Boussiba S, Richmond AE (1980) C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125:143–147

    CAS  Google Scholar 

  • Bryant DA, Dubbs JM, Fields PI, Porter RD, de Lorimier R (1985) Expression of phycobiliprotein genes in Escherichia coli. FEMS Microbiol Lett 29:242–249

    Google Scholar 

  • Cai YA, Murphy JT, Wedemaye GJ, Glazer AN (2001) Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped wit affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem 290:186–204

    CAS  PubMed  Google Scholar 

  • Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing South–North: a way to improve the efficiency of light utilisation of cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81:305–315

    CAS  PubMed  Google Scholar 

  • Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum—a prospective phycobiliprotein-producing strain. J Appl Phycol 19:537–544

    CAS  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb Technol 20:221–224

    CAS  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603–608

    CAS  Google Scholar 

  • Chen T, Wong Y-S, Zheng W (2006a) Purification and characterisation of selenium-containing phycocyanin from selenium-enriched Spirulina platensis. Phytochemistry 67:2424–2430

    CAS  PubMed  Google Scholar 

  • Chen T, Zheng W, Yang F, Bai Y, Wong Y-S (2006b) Mixotrophic culture of high selenium-enriched Spirulina platensis on acetate and the enhanced production of photosynthetic pigments. Enzyme Microb Technol 39:103–107

    CAS  Google Scholar 

  • Cherng S-C, Cheng S-N, Tarn A, Chou T-C (2007) Anti-inflammatory activity of c-phycocyanin in lipopolysaccharide-stimulated RAW 264.7 macrophages. Life Sci 81:1431–1435

    CAS  PubMed  Google Scholar 

  • Chiu H-F, Yang S-P, Kuo Y-L, Lai Y-S, Chou T-C (2006) Mechanisms involved in the antiplatelet effect of C-phycocyanin. Br J Nutr 95:435–440

    CAS  PubMed  Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34:461–465

    CAS  Google Scholar 

  • Contreras-Martel C, Matamala A, Bruna C, Poo-Caamaño G, Almonacid D, Figueroa M, Martínez-Oyanedel J, Bunster M (2007) The structure at 2 Å resolution of phycocyanin from Gracilaria chilensis and the energy transfer network in a PC–PC complex. Biophys Chem 125:388–396

    CAS  PubMed  Google Scholar 

  • Cornejo J, Beale SI (1997) Phycobilin biosynthetic reactions in extracts of cyanobacteria. Photosynth Res 51:223–230

    CAS  Google Scholar 

  • de Lorimier R, Bryant DA, Porter RD, Liu WY, Jay E, Stevens SE (1984) Genes for the a and b subunits of phycocyanin. Proc Natl Acad Sci USA 81:7946–7950

    PubMed  PubMed Central  Google Scholar 

  • Doke JH (2005) An improved and efficient method for the extraction of phycocyanin from Spirulina sp. Int J Food Eng 1:2

    Google Scholar 

  • Edwards MR, Hauer C, Stack RF, Eisele LE, MacColl R (1997) Thermophilic C-phycocyanin: effect of temperature, monomer stability, and structure. Biochim Biophys Acta 1321:157–164

    CAS  Google Scholar 

  • Estrada JPN, Bescós PB, Villar del Fresno AM (2001) Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco 56:497–500

    Google Scholar 

  • Farooq SM, Asokan D, Kalaiselvi P, Sakthivel R, Varalakshmi P (2004) Prophylactic role of phycocyanin: a study of oxalate mediated renal cell injury. Chem-Biol Interact 149:1–7

    CAS  PubMed  Google Scholar 

  • Fukui K, Saito T, Noguchi Y, Kodera Y, Matsushima A, Nishimura H, Inada Y (2004) Relationship between color development and protein conformation in the phycocyanin molecule. Dyes Pigm 63:89–94

    CAS  Google Scholar 

  • Ge B, Tang Z, Lin L, Ren Y, Yang Y, Qin S (2005a) Pilot-scale fermentation and purification of the recombinant allophycocyanin over-expressed in Escherichia coli. Biotechnol Lett 27:783–787

    CAS  PubMed  Google Scholar 

  • Ge B, Tang Z, Zhao F, Ren Y, Yang Y, Qin S (2005b) Scale-up of fermentation and purification of recombinant allophycocyanin over-expressed in Escherichia coli. Process Biochem 40:3190–3195

    CAS  Google Scholar 

  • Ge B, Qin S, Han L, Lin F, Ren Y (2006) Antioxidant properties of recombinant allophycocyanin expressed in Escherichia coli. J Photochem Photobiol B Biol 84:175–180

    CAS  Google Scholar 

  • Gittelson A, Quiang H, Richmond A (1996) Photic volume in photobioreactors supporting ultrahigh population densities of the photoautotroph Spirulina platensis. Appl Environ Microbiol 62:1570–1573

    Google Scholar 

  • Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    CAS  Google Scholar 

  • Glazer AN, Stryer L (1984) Phycofluor probes. Trends Biochem Sci 9:423–427

    CAS  Google Scholar 

  • González R, Rodríques S, Romay C, Ancheta O, González A, Armesto J, Remirez D, Merino N (1999) Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol Res 39:55–59

    PubMed  Google Scholar 

  • Graverholt (2004) Production and characterization of phycocyanin in different isolates of Galdieria sulphuraria. MSc thesis, Aalborg University

  • Graverholt OS, Eriksen NT (2007) Heterotrophic high cell-density fed-batch and continuous flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75

    CAS  PubMed  Google Scholar 

  • Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what de the organisms tell us? J Appl Phycol 19:591–598

    CAS  Google Scholar 

  • Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638

    CAS  Google Scholar 

  • Guan X, Qin S, Su Z, Shao F, Ge B, Li F, Tang X (2007a) Combinational biosynthesis of a fluorescent cyanobacterial holo-a-phycocyanin in Escherichia coli by using one expression vector. Appl Biochem Biotechnol 142:52–59

    CAS  PubMed  Google Scholar 

  • Guan X, Qin S, Zhao F, Zhang X, Tang X (2007b) Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution. Int J Biol Sci 3:434–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo N, Zhang X, Lu Y, Song X (2007) Analysis on the factors affecting start-up intensity in the upstream sequence of phycocyanin b subunit gene from Arthrospira platensis by site-directed mutagenesis. Biotechnol Lett 29:459–464

    CAS  PubMed  Google Scholar 

  • Hahn J, Kühne R, Schmieder P (2007) Solution-state 15N NMR spectroscopic study of a-C-phycocyanin: implications for the structure of the chromophore-binding pocket of the cyanobacterial phytochrome Cph1. ChemBioChem 8:2249–2255

    CAS  PubMed  Google Scholar 

  • Herrera A, Boussiba S, Napoleone V, Hohlberg A (1989) Recovery of c-phycocyanin from the cyanobacterium Spirulina maxima. J Appl Phycol 1:325–331

    Google Scholar 

  • Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M (2000) Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J Appl Phycol 12:435–439

    CAS  Google Scholar 

  • Huang Z, Guo BJ, Wong RNS, Jiang Y (2007) Characterization and antioxidant activity of selenium-containing phycocyanin isolated from Spirulina platensis. Food Chem 100:1137–1143

    CAS  Google Scholar 

  • Jensen GS, Ginsberg DI, Drapeau C (2001) Blue-green algae as an immuno-enhancer and biomodulator. J Am Nutraceut Ass 3:24–30

    Google Scholar 

  • Jespersen L, Strømdahl LD, Olsen K, Skibsted LH (2005) Heat and light stability of three natural blue colorants for use in confectionery and beverages. Eur Food Res Technol 220:261–266

    CAS  Google Scholar 

  • Jiménez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217:179–190

    Google Scholar 

  • Kahn M, Varadharaj S, Shobha JC, Naidu MU, Parinandi NL, Kutala VK, Kuppusamy P (2006) C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes. J Cardiovasc Pharmacol 47:9–20

    Google Scholar 

  • Kwak JY, Takeshige K, Cheung BS, Minakami S (1991) Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. Biochim Biophys Acta 1076:369–373

    CAS  PubMed  Google Scholar 

  • Izydorczyk K, Tarczynska M, Jurczak T, Mrowczynski J, Zalewski M (2005) Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Environ Tox 20:425–430

    CAS  Google Scholar 

  • Kupka M, Scheer H (2008) Unfolding of C-phycocyanin followed by loss of non-covalent chromophore–protein interactions. 1. Equilibrium experiments. Biochim Biophys Acta 1777:94–103

    CAS  PubMed  Google Scholar 

  • Lee Y-K (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411

    Google Scholar 

  • Lewitus AJ, Caron DA (1990) Relative effects of nitrogen or phosphorus depletion and light intensity on the pigmentation, chemical composition, and volume of Pyrenomonas salina (Cryptophyceae). Mar Ecol Prog Ser 61:171–181

    CAS  Google Scholar 

  • Lissi EA, Pizarro M, Romay C (2000) Kinetics of phycocyanine bilin groups destruction by peroxyl radicals. Free Radical Biol Med 28:1051–1055

    CAS  Google Scholar 

  • Liu Y, Xu L, Cheng N, Lin L, Zhang C (2000) Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J Appl Phycol 12:125–130

    CAS  Google Scholar 

  • Liu L-N, Chen X-L, Shamg Y-Z, Zhou B-C (2005a) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142

    CAS  PubMed  Google Scholar 

  • Liu J, Zhang X, Sui Z, Zhang X, Mao Y (2005b) Cloning and characterization of c-phycocyanin operon from the cyanobacterium Arthrospira platensis FACHB341. J Appl Phycol 17:181–185

    CAS  Google Scholar 

  • Lu Y, Zhang X (2005) The upstream sequence of the phycocyanin b subunit gene from Arthrospira platensis regulates expression of gfp gene in response to light intensity. EJB Electron J Biotechnol 8:63–70

    CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334

    CAS  PubMed  Google Scholar 

  • MacColl R (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657:73–81

    CAS  PubMed  Google Scholar 

  • Madhyastha HK, Radha KS, Sugiki M, Omura S, Maruyama M (2006) C-phycocyanin transcriptionally regulates uPA mRNA through cAMP mediated PKA pathway in human fibroblast WI-38 cells. Biochim Biophys Acta 1760:1624–1630

    CAS  PubMed  Google Scholar 

  • Marquardt J (1998) Effects of carotenoid-depletion on the photosynthetic apparatus of a Galdieria sulphuraria (Rhodophyta) strain that retains its photosynthetic apparatus in the dark. J Plant Physiol 152:372–380

    CAS  Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characterization of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410

    CAS  Google Scholar 

  • Marquez FJ, Nishio N, Nagai S (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis in mixotrophic culture. J Chem Tech Biotechnol 62:159–164

    CAS  Google Scholar 

  • McCarty MF (2007a) “Iatrogenic Gilbert syndrome”—a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med Hypotheses 69:974–994

    CAS  PubMed  Google Scholar 

  • McCarty MF (2007b) Clinical potential of Spirulina as a source of phycocyanobilin. J Med Food 10:566–570

    CAS  PubMed  Google Scholar 

  • Minkova KM, Tchernov AA, Tchorbadjieva MI, Fournadjieva ST, Antova RE, Busheva MCh (2003) Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. J Biotechnol 102:55–59

    CAS  PubMed  Google Scholar 

  • Mishra SK, Shrivastav A, Mishra S (2008) Effects of preservatives for food grade C-PC from Spirulina platensis. Process Biochem 43:339–345

    CAS  Google Scholar 

  • Moreno J, Vargas MA, Rodríguez H, Rivas J, Guerrero MG (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomolecular Engineering 20:191–197

    CAS  PubMed  Google Scholar 

  • Mühling M, Belay A, Whitton BA (2005) Screening Arthrospira (Spirulina) stains for heterotrophy. J Appl Phycol 17:129–135

    Google Scholar 

  • Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182

    CAS  PubMed  Google Scholar 

  • Narayan MS, Manoj GP, Vatchravelu K, Bhagyalakshmi N, Mahadevaswamy M (2005) Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis. Int J Food Sci Nutr 56:521–528

    CAS  PubMed  Google Scholar 

  • Nield J, Rizkallah PJ, Barber J, Chayen NE (2003) The 1.45 Å three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J Struct Biol 141:149–155

    CAS  PubMed  Google Scholar 

  • Niu J-F, Wang G-C, Lin X-Z, Zhou B-C (2007) Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. J Chromatogr B 850:267–276

    CAS  Google Scholar 

  • Ohta N, Matsuzaki M, Misumi O, Miyagishima S-Y, Nozaki H, Tanaka K, Shin-i T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77

    CAS  PubMed  Google Scholar 

  • Oi VT, Glazer AN, Stryer L (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93:981–986

    CAS  PubMed  Google Scholar 

  • Oliveira EG, Rosa GS, Moraes MA, Pinto LAA (2008) Phycocyanin content of Spirulina platensis dried in spouted bed and thin layer. J Food Process Eng 31:34–50

    Google Scholar 

  • Padayana AK, Ramakumar S (2006) Lateral energy transfer model for adjacent light-harvesting antennae rods of C-phycocyanins. Biochim Biophys Acta 1757:161–165

    Google Scholar 

  • Padayana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Comm 282:893–898

    Google Scholar 

  • Patil G, Raghavarao KSMS (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem Eng J 34:156–164

    CAS  Google Scholar 

  • Patil G, Chethana S, Sridevi AS, Raghavarao KSMS (2006) Method to obtain C-phycocyanin of high purity. J Chromatogr A 1127:76–81

    CAS  PubMed  Google Scholar 

  • Prasanna R, Sood A, Suresh A, Kaushik BD (2007) Potentials and applications of algal pigments in biology and industry. Acta Bot Hung 49:131–156

    CAS  Google Scholar 

  • Pulz O (2001) Photobioeractors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  PubMed  Google Scholar 

  • Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9:113–119

    Google Scholar 

  • Rhie G, Beale SI (1994) Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors. J Biol Chem 269:9620–9626

    CAS  PubMed  Google Scholar 

  • Richmond A, Grobbelaar JU (1986) Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10:253–264

    Google Scholar 

  • Richmond A, Lichtenberger E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J Appl Phycol 2:195–206

    Google Scholar 

  • Rimbau V, Camins A, Romay C, González R, Pallàs M (1999) Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci Lett 276:75–78

    CAS  PubMed  Google Scholar 

  • Riss J, Décordé K, Sutra T, Delage M, Baccou J-C, Jouy N, Brune J-P, Oréal M, Cristol J-P, Rouanet J-M (2007) Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem 55:7962–7967

    CAS  PubMed  Google Scholar 

  • Rito-Palomares M, Nuñez L, Amador D (2001) Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. J Chem Techn Biotechnol 76:1273–1280

    CAS  Google Scholar 

  • Rodríguez H, Rivas J, Guerrero MG, Losada M (1991) Enhancement of phycobiliprotein production in nitrogen-fixing cyanobacteria. J Bacteriol 20:263–270

    Google Scholar 

  • Romay C, Armesto J, Remirez D, González R, Ledon N, García I (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm Res 47:36–41

    CAS  PubMed  Google Scholar 

  • Roy KR, Arunasree KM, Reddy NP, Dheeraj B, Reddy GV, Reddanna P (2007) Alteration of mitochondrial membrane potential by Spirulina platensis C-phycocyanin induces apoptosis in the doxorubicin-resistant human hepatocellular-carcinoma cell line HepG2. Biotechnol Appl Biochem 47:159–167

    CAS  PubMed  Google Scholar 

  • Samsonoff WA, MacColl R (2001) Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Arch Microbiol 176:400–405

    CAS  PubMed  Google Scholar 

  • Sathyasaikumar KV, Swapna I, Reddy PVB, Murthy CRK, Roy KR, Gupta D, Senthilkumaran B, Reddanna P (2007) Co-administration of C-phycocyanin ameliorates thioacetamide-induced hepatic encephalopathy in Wistar rats. J Neurol Sci 252:67–75

    CAS  PubMed  Google Scholar 

  • Schmidt RA, Wiebe MG, Eriksen NT (2005) Heterotrophic high cell-density fed-batch cultures of the phycocyanin producing red alga Galdieria sulphuraria. Biotechnol Bioeng 90:77–84

    CAS  PubMed  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Google Scholar 

  • Simis SGH, Peters SWM, Gons HJ (2005) Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol Oceanogr 50:237–245

    CAS  Google Scholar 

  • Sing S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Google Scholar 

  • Sloth JK, Wiebe MG, Eriksen NT (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb Technol 38:168–175

    CAS  Google Scholar 

  • Sode KJ, Horikoshi K, Takeyama J, Nakamura N, Matsunga T (1991) On line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence. J Biotechnol 21:209–218

    CAS  PubMed  Google Scholar 

  • Soni B, Kalavadia B, Trivedi U, Madamwar D (2006) Extraction, purification and characterization of phycocyanin from Oscillatoria quadripunctulata—isolated from the rocky shores of Bet-Dwarka, Gujarat, India. Process Biochem 41:2017–1023

    Google Scholar 

  • Soni B, Trivedi U, Madamwar D (2008) A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour Technol 99:188–194

    CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    CAS  PubMed  Google Scholar 

  • Stadnichuk IN, Rakhimberdieva MG, Bolychevtseva YV, Yurina NP, Karapetyan NV, Selyakh IO (1998) Inhibition by glucose of chlorophyll a and phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of coproporphyrinogen III formation. Plant Sci 136:11–23

    CAS  Google Scholar 

  • Stadnichuk IN, Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Selyakh IO, Bolychevtseva YV (2000) Glucose-induced inhibition of the photosynthetic pigment apparatus in heterotrophically-grown Galdieria partita. Russ J Plant Physiol 47:585–592

    CAS  Google Scholar 

  • Stec B, Troxler RF, Teeter MM (1999) Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective in phycobilisome assembly. Biophys J 76:2912–2921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker R, Glazer AN, Ames BN (1987) Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci USA 84:5918–5922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su Z, He D, Qian K, Zhao F, Meng C, Qin S (2006) The recombination and expression of the allophycocyanin beta subunit gene in the chloroplast of Chlamydomonas reinhardtii. World J Microbiol Biotechnol 22:101–103

    CAS  Google Scholar 

  • Subhashini J, Mahipal VK, Reddy MC, Reddy MM, Rachamallu A, Reddanna P (2004) Molecular mechanisms in C-phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562. Biochem Pharmacol 68:453–462

    CAS  PubMed  Google Scholar 

  • Sun L, Wang S, Chen L, Gong X (2003) Promising fluorescent probes from phycobiliproteins. IEEE J Sel Top Quantum Electron 9:177–188

    CAS  Google Scholar 

  • Sun L, Wang S, Qiao Z (2006) Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis. J Biotechnol 121:563–569

    CAS  PubMed  Google Scholar 

  • Telford WG, Moss MW, Morseman JP, Allnut FCT (2001) Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Methods 254:13–30

    CAS  PubMed  Google Scholar 

  • Terry MJ, Maines MD, Lagarias JC (1993) Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem 268:26099–26106

    CAS  PubMed  Google Scholar 

  • Thoren KL, Connell KB, Robinson TE, Shellhamer DD, Tammaro MS, Gindt YM (2006) The free energy of dissociation of oligomeric structure in phycocyanin is not linear with denaturant. Biochemistry 45:12050–12059

    CAS  PubMed  Google Scholar 

  • Tredici MR, Carlozzi P, Zittelli GC, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159

    Google Scholar 

  • Troxler RF, Ehrhardt MM, Brown-Mason AS, Offner GD (1981) Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. II. Complete amino acid sequence of the b subunit. J Biol Chem 256:12176–12184

    CAS  PubMed  Google Scholar 

  • Troxler RF, Lin S, Offner GD (1989) Heme regulates expression of phycobiliprotein photogenes in the unicellular rhodophyte, Cyanidium caldarium. J Biol Chem 264:20596–20601

    CAS  PubMed  Google Scholar 

  • Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-a subunit in a heterologous host. Proc Natl Acad Sci USA 98:10560–10565

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Liere L, de Groot GJ, Muur LR (1979) Pigment variation with irradiance in Oscilatoria agardhii Gomont in nitrogen (nitrate)-limited chemostat cultures. FEMS Microbiol Lett 6:337–340

    Google Scholar 

  • Vasudevan V, Prasanna R, Sood A, Kaushik BD (2007) Enhancing pigment accumulation in Anabaena strains using sugars. Acta Bot Hung 49:187–198

    CAS  Google Scholar 

  • Venugopal V, Prasanna R, Sood A, Jaiswal P, Kaushik BD (2006) Stimulation of pigment accumulation in Anabaena azollae strains: effect of light intensity and sugars. Folia Microbiol 51:50–56

    CAS  Google Scholar 

  • Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. J Phycol 36:675–679

    CAS  PubMed  Google Scholar 

  • Wang H, Liu Y, Gao X, Carter CL, Liu Z-R (2007) The recombinant b subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Lett 247:150–158

    CAS  PubMed  Google Scholar 

  • Xing W, Huang W, Li D, Liu Y (2007) Effect of iron on growth, pigment content, photosystem II efficiency, and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii. Curr Microbiol 55:94–98

    CAS  PubMed  Google Scholar 

  • Yamanaka G, Glazer AN (1980) Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechococcus sp. Arch Microbiol 124:39–47

    CAS  Google Scholar 

  • Yang Y, Ge B, Guan X, Zhang W, Qin S (2008) Combinatorial biosynthesis of a fluorescent cyanobacterial holo-a-allophycocyanin in Escherichia coli. Biotechnol Lett 30:1001–1004

    CAS  PubMed  Google Scholar 

  • Yeh SW, Ong LJ, Clark JH, Glazer AN (1987) Fluorescence properties of allophycocyanin and a crosslinked allophycocyanin trimer. Cytometry 8:91–95

    CAS  PubMed  Google Scholar 

  • Zetsche K, Valentin K (1993/1994) Structure, coding capacity and gene sequence of the plastid genome from red algae. Endocytobiosis Cell Res 10:107–127

    Google Scholar 

  • Zhang Y-M, Chen F (1999) A simple method for efficient separation and purification of c-phycocyanin and allophycocyanin from Spirulina platensis. Biotechnol Tech 13:601–603

    CAS  Google Scholar 

  • Zhou Z-P, Liu L-N, Chen X-L, Wang J-X, Chen M, Zhang Y-Z, Zhou BC (2005) Factors that effect antioxidant activity if C-phycocyanin from Spirulina platensis. J Food Biochem 29:313–322

    CAS  Google Scholar 

  • Zhu Y, Chen XB, Wang KB, Li YX, Bai KZ, Kuang TY, Ji HB (2007) A simple method for extracting C-phycocyanin from Spirulina platensis using Klebsiella pneumonia. Appl Microbiol Biotechnol 74:244–248

    CAS  PubMed  Google Scholar 

  • Zitelli GC, Tomasello V, Pinzani E, Tredici MR (1996) Outdoor culture of Arthrospira platensis during autumn and winter in temperate climate. J Appl Phycol 8:293–301

    Google Scholar 

Download references

Acknowledgments

I thank Rikke A. Schmidt, Jenni Sloth, Marilyn G. Wiebe and Olav S. Graverholt for collaborations on heterotrophic C-PC synthesis in G. sulphuraria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels T. Eriksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksen, N.T. Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80, 1–14 (2008). https://doi.org/10.1007/s00253-008-1542-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1542-y

Keywords

Navigation