Skip to main content
Log in

Development of a biosensor for on-line detection of tributyltin with a recombinant bioluminescent Escherichia coli strain

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract.

A biosensor was developed for the detection of tributyltin (TBT), using a bioluminescent recombinant Escherichia coli::luxAB strain. Dedicated devices allowed the on-line measurement of bioluminescence, pH and dissolved oxygen values and the feed-back regulation of temperature. Bacterial physiology was monitored by the measurement of the cellular density, respiratory activity and the intracellular level of ATP, glucose and acetate levels. Our results showed that a synthetic glucose medium gave a better TBT detection limit than LB medium (respectively 0.02 µM and 1.5 µM TBT). High growth and dilution rates (D=0.9 h−1) allowed maximum light emission from the bacterium. Moreover, simple atmospheric air bubbling was sufficient to provide oxygen for growth and the bioluminescence reaction. Real-time monitoring of bioluminescence after TBT induction occurred with continuous addition of decanal up to 300 µM, which was not toxic throughout a 7-day experiment. The design of our biosensor and the optimization of the main parameters that influence microbial activity led to the capacity for the detection of TBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5a, b.

Similar content being viewed by others

References

  • Alzieu C (1998) Tributyltin: case study of a chronic contaminant in the coastal environment. Ocean Coast Manag 40:23–36

    Article  Google Scholar 

  • Andrès Y, Thouand G, Boualam M, Mergeay M (2000) Factors influencing the biosorption of gadolinium by micro-organisms and its mobilisation from sand. Appl Microbiol Biotechnol 54:262–267

    PubMed  Google Scholar 

  • Atlas RM (1997) Handbook of microbiological media. CRC Press, Boca Raton, Fla.

  • Beveridge TJ, Graham LL (1991) Surface layers of bacteria. Microbiol Rev 55:684–705

    CAS  PubMed  Google Scholar 

  • Bitton G, Khafif T, Chataigner N, Bastide J, Coste CM (1986) A direct INT-dehydrogenase assay (DIDHA) for assessing chemical toxicity. Toxicol Assess 1:1–12

    CAS  Google Scholar 

  • Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actual B Chem 85:179–185

    Article  Google Scholar 

  • Briscoe SF, Diorio C, DuBow MS (1996) Luminescent biosensors for the detection of tributyltin and dimethyl sulfoxide and the elucidation of their mechanisms of toxicity. In: Moo-Young M et al (eds) Environmental biotechnology: principles and applications. Kluwer, Rotterdam, pp 645–655

    Google Scholar 

  • Choi SH, Gu MB (2002) A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens Bioelectron 17:433–440

    Article  CAS  PubMed  Google Scholar 

  • Corbisier P, Van der Lelie D, Borremans B, Provoost A, De Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metal in environmental samples. Anal Chim Acta 387:235–244

    CAS  Google Scholar 

  • Durand MJ, Thouand G, Dancheva-Ivanova T,Vachon P, DuBow MS (2003) Specific detection of organotin compounds with a recombinant luminescent bacteria. Chemosphere (in press)

  • Gu MB, Dhurjati, PS, Van Dyk TK, LaRossa RA (1996) A miniature bioreactor for sensing toxicity using recombinant bioluminescent Escherichia coli cells. Biotechnol Prog 12:393–397

    Article  CAS  PubMed  Google Scholar 

  • Guzzo A, DuBow MS (1991) Construction of stable, single copy luciferase gene fusions in Escherichia coli. Arch Microbiol 156:444–448

    CAS  PubMed  Google Scholar 

  • Heitzer A, Malachowski K, Thonnard JE, Bienkowski PR, White DC, Sayler GS (1994) Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic bioreporter bacterium. Appl Environ Microbiol 60:1487–1494

    CAS  PubMed  Google Scholar 

  • Holzman TF, Baldwin TO (1983) Reversible inhibition of the bacterial luciferase catalysed bioluminescence reaction by aldehyde substrate: kinetic mechanism and ligand effects. Biochemistry 12:2838–2846

    Google Scholar 

  • Ikariyama Y, Nishigushi S, Koyama T, Kobatake E, Aizawa M, Tsuda M, Nahazawa T (1997) Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. Anal Chem 69:2600–2605

    Article  CAS  PubMed  Google Scholar 

  • Karube I (1990) Microbial sensor. J Biotechnol 15:255–265

    Article  CAS  PubMed  Google Scholar 

  • Kobatake E, Niimi T, Haruyama T, Ikariyama Y, Aizawa M (1995) Biosensing of benzene derivatives in the environment by luminescent Escherichia coli. Biosens Bioelectron 10:601–605

    Article  CAS  PubMed  Google Scholar 

  • Köhler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius Z Anal Chem 366:769–779

    Article  Google Scholar 

  • Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single substrate controlled growth to mixed substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    CAS  PubMed  Google Scholar 

  • Kress-Rogers E (1997) Biosensors and electronic noses for practical applications. In: Kress-Rogers E (ed) Handbook of biosensors and electronic noses, medicine, food and the environment. CRC Press, Boca Raton, Fla., pp 3–39

  • Leib TM, Pereira CJ, Villadsen J (2001) Bioreactors: a chemical engineering perspective. Chem Eng Sci 56:5485–5497

    Article  CAS  Google Scholar 

  • Meighen EA (1994) Genetics of bacterial bioluminescence. Annu Rev Genet 28:117–139

    Article  CAS  PubMed  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Geritz J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid bound resistance to heavy metals. J Bacteriol 162:328–334

    CAS  PubMed  Google Scholar 

  • Polyak B, Bassis E, Novodvorets A, Belkin S, Marks RS (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization. Sens Actual B Chem 74:18–26

    Article  Google Scholar 

  • Rozen Y, Nejidat A, Gartemann KH, Belkin S (1999) Specific detection of p-chlorobenzoic acid by Escherichia coli bearing a plasmid borne fcbA::lux fusion. Chemosphere 38:633–641

    Article  CAS  PubMed  Google Scholar 

  • Rupani SP, Gu MB, Konstantinov KB, Dhurjati PS, Van Dyk TK, LaRossa RA (1996) Characterization of the stress response of a bioluminescent biological sensor in batch and continuous cultures. Biotechnol Prog 12:387–392

    CAS  PubMed  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 73. Springer, Berlin Heidelberg New York, pp 129–169

  • Sawers G (1999) The aerobic/anaerobic interface. Curr Opin Microbiol 2:181–187

    Article  CAS  PubMed  Google Scholar 

  • Schaechter M, Maaloe O, Kjelgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J Gen Microbiol 19:592–606

    CAS  Google Scholar 

  • Shokri A, Sandén AM, Larsson G (2002) Growth rate dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58:386–392

    Article  CAS  PubMed  Google Scholar 

  • Thouand G, Durand MJ, Picart P, Daniel P, Massé J, DuBow MS (2001) Detection of bacteria in the food industry with bioluminescent sensors. Recent Results Dev Microbiol 5:79–93

    CAS  Google Scholar 

  • Ulitzur S, Hastings JW (1979) Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proc Natl Acad Sci USA 76:265–267

    CAS  PubMed  Google Scholar 

  • White JS, Tobin JM, Cooney JJ (1999) Organotin compounds and their interactions with microorganisms. Can J Microbiol 45:541–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement.

This research was supported by grant CER 2000–2006, Action N° 15 (section I), research program number 18035 (Ville de La Roche-sur-Yon, Conseil Général de Vendée, Conseil Régional des Pays de la Loire, Ministère français chargé de la Recherche).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Thouand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thouand, G., Horry, H., Durand, M.J. et al. Development of a biosensor for on-line detection of tributyltin with a recombinant bioluminescent Escherichia coli strain. Appl Microbiol Biotechnol 62, 218–225 (2003). https://doi.org/10.1007/s00253-003-1279-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1279-6

Keywords

Navigation