Skip to main content
Log in

Inducible release of particulates from liposomes using the mechanosensitive channel of large conductance and l-α-lysophosphatidylcholine

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The mechanosensitive channel of large conductance (MscL) from Escherichia coli is a prototype for the mechanosensitive class of ion channels and opens one of the largest known gated transmembrane pores. As such, MscL offers the structural framework for the development of liposomal nanovalves for biotechnological applications. Here we incorporated MscL into liposomes and investigated the effects of l-α-lysophosphatidylcholine (LPC) with varying acyl chain lengths or saturation on its pore gating. This was measured by the efflux of encapsulated 5,6-carboxyfluorescein (CF) from the MscL proteoliposomes. Efflux improved in the presence of shorter and double-bonded LPC acyl chains. It was also dependent on the detergent concentration employed during MscL purification. MscL purified in 2 mM dodecyl β-d-maltopyranoside (DDM) had a marked increase in CF efflux compared to MscL purified in 1 mM DDM when treated with LPC. The purification conditions also resulted in increased efflux from proteoliposomes containing the G22C-MscL pore mutant channel, which requires higher membrane tension for its activation compared to WT-MscL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273:26670–26674

    Article  CAS  PubMed  Google Scholar 

  • Battle AR, Petrov E, Pal P, Martinac B (2009) Rapid and improved reconstitution of bacterial mechanosensitive ion channel proteins MscS and MscL into liposomes using a modified sucrose method. FEBS Lett 583:407–412

    Article  CAS  PubMed  Google Scholar 

  • Begum M, Abbulu K, Sudhakar M (2012) Flurbiprofen-loaded stealth liposomes: studies on the development, characterization, pharmacokinetics, and biodistribution. JYP 4:209–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berrier C, Garrigues A, Richarme G, Ghazi A (2000) Elongation factor Tu and DnaK are transferred from the cytoplasm to the periplasm of Escherichia coli during osmotic downshock presumably via the mechanosensitive channel MscL. J Bacteriol 182:248–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Betanzos M, Chiang CS, Guy HR, Sukharev S (2002) A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Biol 9:704–710

    Article  CAS  PubMed  Google Scholar 

  • Birkner JP, Poolman B, Kocer A (2012) Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution. Proc Natl Acad Sci USA 109:12944–12949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buxbaum E (2007) Fundamentals of Protein Structure and Function. Springer, Heidelberg

    Google Scholar 

  • Chiang YT, Lo CL (2014) pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials 35:5414–5424

    Article  CAS  PubMed  Google Scholar 

  • Corry B, Rigby P, Liu ZW, Martinac B (2005) Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophy J: Biophys Lett 89:49–51

    Article  Google Scholar 

  • Corry B, Hurst AC, Pal P, Nomura T, Rigby P, Martinac B (2010) An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J Gen Physiol 136:483–494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cuendet M, Oteham CP, Moon RC, Pezzuto JM (2006) Quinone reductase induction as a biomarker for cancer chemoprevention. J Nat Prod 69:460–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Smet M, Heijman E, Langereis S, Hijnen NM, Grull H (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150:102–110

    Article  PubMed  Google Scholar 

  • Ferreira Ddos S, Lopes SC, Franco MS, Oliveira MC (2013) pH-sensitive liposomes for drug delivery in cancer treatment. Therapeutic delivery 4:1099–1123

    Article  PubMed  Google Scholar 

  • Fitzsimmons SA, Workman P, Grever M, Paull K, Camalier R, Lewis AD (1996) Reductase enzyme expression across the National Cancer Institute Tumor cell line panel: correlation with sensitivity to mitomycin C and EO9. J Natl Cancer Inst 88:259–269

    Article  CAS  PubMed  Google Scholar 

  • Häse CC, Le Dain AC, Martinac B (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270:18329–18334

    Article  PubMed  Google Scholar 

  • Iscla I, Blount P (2012) Sensing and responding to membrane tension: the bacterial MscL channel as a model system. Biophys J 103:169–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iscla I, Eaton C, Parker J, Wray R, Kovacs Z, Blount P (2013) Improving the design of a MscL-based triggered nanovalve. Biosensors 3:171–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Israelachvili J (2011) Soft and biological structures intermolecular and surface forces, pp 535–576

  • Koçer A (2007) A remote controlled valve in liposomes for triggered liposomal release. J Liposome Res 17:219–225

    Article  PubMed  Google Scholar 

  • Koçer A, Walko M, Mieijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309:755–758

    Article  PubMed  Google Scholar 

  • Koçer A, Walko M, Bulten E, Halza E, Feringa BL, Meijberg W (2006) Rationally designed chemical modulators convert a bacterial channel protein into a pH-sensory valve. Angew Chem Int Ed Engl 45:3126–3130

    Article  PubMed  Google Scholar 

  • Koçer A, Walko M, Feringa BL (2007) Synthesis and utilization of reversible and irreversible light-activated nanovalves derived from the channel protein MscL. Nat Protoc 2:1426–1437

    Article  PubMed  Google Scholar 

  • Kragh-Hansen U, le Maire M, Noel JP, Gulik-Krzywicki T, Moller JV (1993) Transitional steps in the solubilization of protein-containing membranes and liposomes by nonionic detergent. Biochemistry 32:1648–1656

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U, le Maire M, Moller JV (1998) The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys J 75:2932–2946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    Article  CAS  PubMed  Google Scholar 

  • le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508:86–111

    Article  PubMed  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Markin VS, Martinac B (1991) Mechanosensitive ion channels as reporters of bilayer expansion. A theoretical model. Biophys J 60:1120–1127

    CAS  PubMed  Google Scholar 

  • Martinac B (2001) Mechanosensitive channels in prokaryotes. Cell Physiol Biochemi 11:61–76

    Article  CAS  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    Article  CAS  PubMed  Google Scholar 

  • Martinac B (2009) Open channel structure of MscL: a patch-clamp and spectroscopic study. Appl Magn Reson 36:171–179

    Article  CAS  Google Scholar 

  • Martinac B (2011) Bacterial mechanosensitive channels as a paradigm for mechanosensory transduction. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 28:1051–1060

    Article  CAS  Google Scholar 

  • Martinac B, Adler J, Kung C (1990) mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263

    Article  CAS  PubMed  Google Scholar 

  • Moe P, Blount P (2005) Assessment of potential stimuli for mechano-dependent gating OF MSCL: effects of pressure, tension, and lipid headgroups. Biochemistry 44:12239–12244

    Article  CAS  PubMed  Google Scholar 

  • Moe PC, Levin G, Blount P (2000) Correlating a protein structure with function of a bacterial mechanosensitive channel. J Biol Chem 275:31121–31127

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee N, Jose MD, Birkner JP, Walko M, Ingolfsson HI, Dimitrova A, Arnarez C, Marrink SJ, Kocer A (2014) The activation mode of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tension-induced gating. FASEB J 28:4292–4302

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Cranfield CG, Deplazes E, Owen DM, Macmillan A, Battle AR, Constantine M, Sokabe M, Martinac B (2012) Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proc Natl Acad Sci U S A 109:8770–8775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obata Y, Tajima S, Takeoka S (2010) Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release 142:267–276

    Article  CAS  PubMed  Google Scholar 

  • Ong W, Yang Y, Cruciano AC, McCarley RL (2008) Redox-triggered contents release from liposomes. J Am Chem Soc 130:14739–14744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Shaughnessy J (2003) Liposomal anthracyclines for breast cancer: overview. Oncologist 8 (Suppl 2):1–2

    Article  PubMed  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2001) Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J Gen Physiol 118:193–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942–948

    Article  CAS  PubMed  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703

    Article  CAS  PubMed  Google Scholar 

  • Petrov E, Rohde PR, Martinac B (2011) “Flying-patch” patch-clamp study of G22E-MscL mutant under high hydrostatic pressure. Biophys J 100:1635–1641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Powl AM, Lee AG (2007) Lipid effects on mechanosensitive channels. In: Simon SA (ed) Proceedings of the current topics in membranes: mechanosensitive ion channels: Part A, 58:151–178

  • Powl AM, East JM, Lee AG (2003) Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry 42:14306–14317

    Article  CAS  PubMed  Google Scholar 

  • Powl AM, East JM, Lee AG (2007) Different effects of lipid chain length on the two sides of a membrane and the lipid annulus of MscL. Biophys J 93:113–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Powl AM, East JM, Lee AG (2008a) Anionic phospholipids affect the rate and extent of flux through the mechanosensitive channel of large conductance MscL. Biochemistry 47:4317–4328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Powl AM, East JM, Lee AG (2008b) Importance of direct interactions with lipids for the function of the mechanosensitive channel MscL. Biochemistry 47:12175–12184

    Article  CAS  PubMed  Google Scholar 

  • Rigaud JL, Pitard B, Levy D (1995) Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta 1231:223–246

    Article  PubMed  Google Scholar 

  • Sanchez M, Aranda FJ, Teruel JA, Ortiz A (2011) New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid. Chem Phys Lipids 164:16–23

    Article  CAS  PubMed  Google Scholar 

  • Straubinger RM (1993) pH-sensitive liposomes for delivery of macromolecules into cytoplasm of cultured cells. Methods Enzymol 221:361–376

    Article  CAS  PubMed  Google Scholar 

  • van den Bogaart G, Krasnikov V, Poolman B (2007) Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. Biophys J 92:1233–1240

    Article  PubMed Central  PubMed  Google Scholar 

  • van Elk M, Deckers R, Oerlemans C, Shi Y, Storm G, Vermonden T, Hennink WE (2014) Triggered release of doxorubicin from temperature-sensitive poly(N-(2-hydroxypropyl)-methacrylamide mono/dilactate) grafted liposomes. Biomacromolecules 15:1002–1009

    Article  PubMed  Google Scholar 

  • Wang Y, Liu Y, Deberg HA, Nomura T, Hoffman MT, Rohde PR, Schulten K, Martinac B, Selvin PR (2014) Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife 3:e01834

    PubMed Central  PubMed  Google Scholar 

  • Wolff AC (2003) Liposomal anthracyclines and new treatment approaches for breast cancer. Oncologist 8(Suppl 2):25–30

    Article  CAS  PubMed  Google Scholar 

  • Yefimov S, van der Giessen E, Onck PR, Marrink SJ (2008) Mechanosensitive membrane channels in action. Biophys J 94:2994–3002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshimura K, Batiza A, Kung C (2001) Chemically charging the pore constriction opens the mechanosensitive channel MscL. Biophys J 80:2198–2206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshimura K, Nomura T, Sokabe M (2004) Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys J 84:2113–2120

    Article  Google Scholar 

  • Yoshimura K, Usukura J, Sokabe M (2008) Gating-associated conformational changes in the mechanosensitive channel MscL. Proc Natl Acad Sci USA 105:4033–4038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuba E, Harada A, Sakanishi Y, Kono K (2011) Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes. J Control Release 149:72–80

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Charles Cranfield, Dr. Takeshi Nomura, Paul Rohde, and Maryrose Constantine for fruitful discussions and technical help. This study was funded in part by National Health and Medical Research Council of Australia grants to BH and BM and an Australian Postgraduate Award to AF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Martinac.

Additional information

Special issue: Biophysics of Mechanotransduction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foo, A., Battle, A.R., Chi, G. et al. Inducible release of particulates from liposomes using the mechanosensitive channel of large conductance and l-α-lysophosphatidylcholine. Eur Biophys J 44, 521–530 (2015). https://doi.org/10.1007/s00249-015-1055-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1055-4

Keywords

Navigation