Skip to main content

Advertisement

Log in

On-chip Escherichia coli culture, purification, and detection of expressed proteins

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In a recent study, we reported the results of a rapid high-throughput expression analysis of the affinity-tagged proteins present in total cell lysates, using a surface plasmon resonance (SPR) imaging protein chip system. In this paper, we describe a novel method, which is able to sequentially carry out a recombinant Escherichia coli culture, as well as the detection and purification of the expressed proteins on a single microwell chip, fabricated on a two-dimensional thin gold film. Following the induction of the protein on the microwell chip, the E. coli cells were lysed on the chip via the addition of lysozymes, and the expressed glutathione S-transferase-fused green fluorescent protein (GST–GFP) was then purified on the chip via affinity interaction with the glutathionylated gold surface of the chip. Finally, the expressed protein was directly detected using the surface plasmon resonance (SPR) imaging system. This system saves a substantial amount of time, experimental resources, and labor, by allowing for the complicated and labor-intensive procedures inherent to the production of recombinant proteins to be conducted on a single microwell chip, simply and economically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GST–GFP:

Glutathione S-transferase-fused green fluorescent protein

IPTG:

Isopropyl β-d-thiogalactopyranoside

PDMS:

Poly-dimethylsiloxane

SDS–PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SPR:

Imaging surface plasmon resonance imaging

References

  • Albala JS, Franke K, McConnell IR, Pak KL, Folta PA, Rubinfeld BA, Davies H, Lennon GG, Clark R (2000) From genes to proteins: high-throughput expression and purification of the human proteome. J Cell Biochem 80:187–191

    Article  PubMed  Google Scholar 

  • Beebe DJ, Moore JS, Yu Q, Liu RH, Kraft ML, Jo BH, Devadoss C (2000) Microfluidic tectonics: a comprehensive construction platform for microfluidic systems. Proc Natl Acad Sci USA 97:13488–13493

    Article  PubMed  ADS  Google Scholar 

  • Braun P, LaBaer J (2003) High throughput protein production for functional proteomics. Trends Biotechnol 21:383–388

    Article  PubMed  Google Scholar 

  • Braun P, Hu Y, Shen B, Halleck A, Koundinya M, Harlow E, LaBaer J (2002) Proteome-scale purification of human proteins from bacteria. Proc Natl Acad Sci USA 99:2654–2659

    Article  PubMed  ADS  Google Scholar 

  • Burbaum J, Tobal GM (2002) Proteomics in drug discovery. Curr Opin Chem Biol 6:427–433

    Article  PubMed  Google Scholar 

  • Fivash M, Towler EM, Fisher RJ (1998) BIAcore for macromolecular interaction. Curr opin Biotechnol 9:97–101

    Article  PubMed  Google Scholar 

  • Guan KL, Dixon JE (1991) Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem 192:262–267

    Article  PubMed  Google Scholar 

  • Inoue I, Wakamoto Y, Moriguchi H, Okano K, Yasuda K (2005) On-chip culture system for observation of isolated individual cells. Lab Chip 1:50–55

    Article  Google Scholar 

  • Jung JM, Shin YB, Kim MG, Ro HS, Jung HT, Chung BH (2004) A fusion protein expression analysis using surface plasmon resonance imaging. Anal Biochem 330:251–256

    Article  PubMed  Google Scholar 

  • Jung SO, Ro HS, Koh BH, Shin YB, Kim MG, Chung BH (2005) Surface plasmon resonance imaging-based protein arrays for high-throughput screening of protein–protein interaction inhibitors. Proteomics 5:4427–4431

    Article  PubMed  Google Scholar 

  • Kawahashi Y, Doi N, Takashima H, Tsuda C, Oishi Y, Oyama R, Yonezawa M, Miyamoto-Sato E, Yanagawa H (2003) In vitro protein microarrays for detecting protein–protein interactions: application of a new method for fluorescence labeling of proteins. Proteomics 3:1236–1243

    Article  PubMed  Google Scholar 

  • MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760–1763

    PubMed  ADS  Google Scholar 

  • Matsubara Y, Murakami Y, Kobayashi M, Morita Y, Tamiya E (2004) Application of on-chip cell cultures for the detection of allergic response. Biosens Bioelectron 19:741–747

    Article  PubMed  Google Scholar 

  • McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75:5646–5655

    Article  PubMed  Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40

    Article  PubMed  Google Scholar 

  • Nilsson J, Stahl S, Lundeberg J, Uhlen M, Nygren PA (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 11:1–16

    Article  PubMed  Google Scholar 

  • Phelan ML, Nock S (2003) Generation of bioreagents for protein chips. Proteomics 3:2123–2134

    Article  PubMed  Google Scholar 

  • Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215

    Article  PubMed  ADS  Google Scholar 

  • Sassenfeld HM (1990) Engineering proteins for purification. Trends Biotechnol 8:88–93

    Article  PubMed  Google Scholar 

  • Smith EA, Corn RM (2003) Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl Spectrosc 57:320A–332A

    Article  PubMed  ADS  Google Scholar 

  • Soares HD, Williams SA, Snyder PJ, Gao F, Stiger T, Rohlff C, Herath A, Sunderland T, Putnam K, White WF (2004) Proteomic approaches in drug discovery and development. Int Rev Neurobiol 61:97–126

    Article  PubMed  Google Scholar 

  • Steiner G (2004) Surface plasmon resonance imaging. Anal Bioanal Chem 379:328–331

    Article  PubMed  Google Scholar 

  • Templin MF, Stoll D, Schwenk JM, Potz O, Kramer S, Joos TO (2003) Protein microarrays: promising tools for proteomic research. Proteomics 3:2155–2166

    Article  PubMed  Google Scholar 

  • Tomizaki KY, Usui K, Mihara H (2005) Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 6:782–799

    Article  PubMed  Google Scholar 

  • Umehara S, Wakamoto Y, Inoue I, Yasuda K (2003) On-chip single-cell microcultivation assay for monitoring environmental effects on isolated cells. Biochem Biophys Res Commun 305:534–540

    Article  PubMed  Google Scholar 

  • Wang J, Ibanez A, Chatrathi MP, Escarpa A (2001) Electrochemical enzyme immunoassays on microchip platforms. Anal Chem 73:5323–5327

    Article  PubMed  Google Scholar 

  • Whelan RJ, Wohland T, Neumann L, Huang B, Kobilka BK, Zare RN (2002) Analysis of biomolecular interactions using a miniaturized surface plasmon resonance sensor. Anal Chem 74:4570–4576

    Article  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  PubMed  ADS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Choong-Min Ryu (KRIBB) for his helpful comments on this manuscript. This research was supported by grants from the KRIBB Initiative Research Program (KRIBB, Korea), the Protein Chip Technology Program, and the Nano/Bio Science and Technology Program (MOST, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Hyun Chung.

Additional information

M. Kim and S. Y. Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Lee, SY., Choi, H. et al. On-chip Escherichia coli culture, purification, and detection of expressed proteins. Eur Biophys J 35, 655–662 (2006). https://doi.org/10.1007/s00249-006-0072-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-006-0072-8

Keywords

Navigation