Skip to main content

Advertisement

Log in

Structure-based calculation of multi-donor multi-acceptor fluorescence resonance energy transfer in the 4×6-mer tarantula hemocyanin

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Hemocyanins are oxygen carriers of arthropods and molluscs. The oxygen is bound between two copper ions, forming a Cu(II)-O2 2−-Cu(II) complex. The oxygenated active sites create two spectroscopic signals indicating the oxygen load of the hemocyanins: first, an absorption band at 340 nm which is due to a ligand-to-metal charge transfer complex, and second, a strong quenching of the intrinsic tryptophan fluorescence, the cause of which has not been definitively identified. We showed for the 4×6-mer hemocyanin of the tarantula Eurypelma californicum that the fluorescence quenching of oxygenated hemocyanin is caused exclusively by fluorescence resonance energy transfer (FRET). The tarantula hemocyanin consists of 24 subunits containing 148 tryptophans acting as donors and 24 active sites as acceptors. The donor–acceptor distances are determined on the basis of a closely related crystal structure of the horseshoe crab Limulus polyphemus hemocyanin subunit II (68–79% homology). Calculation of the expected fluorescence quenching and the measured transfer efficiency coincided extraordinary well, so that the fluorescence quenching of oxygenated tarantula hemocyanin can be completely explained by Förster transfer. This results explain for the first time, on a molecular basis, why fluorescence quantum yield can be used as an intrinsic signal for oxygen load of at least one arthropod hemocyanin, in particular that from the tarantula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldwin MJ, Root DE, Pate JE, Fujisawa K, Kitajima N, Solomon EI (1992) Spectroscopic studies of a side-on peroxide-bridged binuclear copper(II) model complex of relevance to the active sites in oxyhemocyanin and oxytyrosinase. J Am Chem Soc 114:10421–10431

    CAS  Google Scholar 

  • Boteva R, Ricchelli F, Sartor G, Decker H (1993) Fluorescence properties of hamocyanin from tarantula (Eurypelma californicum): a comparison between the whole molecule and isolated subunits. J Photochem Photobiol B 17:145–153

    Article  CAS  Google Scholar 

  • Burmester T (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18:184–195

    CAS  PubMed  Google Scholar 

  • Callis PR (1997) 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol 278:113–150

    CAS  PubMed  Google Scholar 

  • Chen RF (1967) Fluorescence quantum yields of tryptophan and tyrosine. Anal Lett 1:35–42

    CAS  Google Scholar 

  • Cuff ME, Miller KI, van Holde KE, Hendrickson WA (1998) Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol 278:855–870

    CAS  PubMed  Google Scholar 

  • Decker H, Hartmann H, Sterner R, Schwarz E, Pilz I (1996) Small-angle X-ray scattering reveals differences between the quaternary structures of oxygenated and deoxygenated tarantula hemocyanin. FEBS Lett 393:226–230

    CAS  PubMed  Google Scholar 

  • De Haas F, Van Bruggen EF (1994) The interhexameric contacts in the four-hexameric hemocyanin from the tarantula Eurypelma californicum. A tentative mechanism for cooperative behavior. J Mol Biol 237:464–478

    PubMed  Google Scholar 

  • Dewey TG, Hammes GG (1980) Calculation of fluorescence resonance energy transfer on surfaces. Biophys J 32:1023–1036

    CAS  PubMed  Google Scholar 

  • Dos Remedios CG, Moens PDJ (1995) Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol 115:175–185

    PubMed  Google Scholar 

  • Fairclough RH, Cantor CR (1978) The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzymol 48:347–379

    CAS  PubMed  Google Scholar 

  • Floyd JS, Haralampus-Grynaviski N, Ye T, Zheng B, Simon JD, Edington MD (2001) Time-resolved spectroscopic studies of radiationless decay processes in photoexcited hemocyanins. J Phys Chem B 105:1478–1483

    CAS  Google Scholar 

  • Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 2:55–75

    CAS  Google Scholar 

  • Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bak HJ, Beintema JJ (1984) 3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin. Nature 309:23–29

    CAS  Google Scholar 

  • Hartmann H, Decker H (2002) All hierarchical levels are involved in conformational transitions of the 4×6-meric tarantula hemocyanin upon oxygenation. Biochim Biophys Acta 1601:132–137

    CAS  PubMed  Google Scholar 

  • Hazes B, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z, Kalk KH, Hol WGJ (1993) Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 Å resolution: clues for a mechanism for allosteric regulation. Protein Sci 2:597–619

    CAS  PubMed  Google Scholar 

  • Kitajima N, Fujisawa K, Moro-oka Y (1989) µ-η22-Peroxo binuclear copper complex, (Cu(HB(3,5-iPr2pz)3))2(O2). J Am Chem Soc 111:8975–8976

    CAS  Google Scholar 

  • Kitajima N, Fujisawa K, Fujimoto C, Moro-oka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A (1992) A new model for dioxygen binding in hemocyanin: synthesis, characterization, and molecular structure of the µ-η22-peroxo dinuclear copper(II) complexes (Cu(HB(3,5-R2pz)3))2(O2) (R=i-Pr and Ph). J Am Chem Soc 114:1277–1291

    CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer/Plenum, New York

  • Linzen B, Soeter NM, Riggs AF, Schneider HJ, Schartau W, Moore MD, Yokota E, Behrens PQ, Nakashima H, Takagi T, Nemoto T, Vereijken JM, Bak HJ, Beintema JJ, Volbeda A, Gaykema WPJ, Hol WGJ (1985) The structure of arthropod hemocyanins. Science 229:519–524

    CAS  PubMed  Google Scholar 

  • Loewe R (1978) Hemocyanins in spiders V: fluorimetric recording of oxygen binding curves, and its application to the analysis of allosteric interactions in Eurypelma californicum hemocyanin. J Comp Physiol 128:161–168

    CAS  Google Scholar 

  • Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WG (1994) Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences. Proteins 19:302–309

    CAS  PubMed  Google Scholar 

  • Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. Adv Comp Environ Physiol 13:325–375

    CAS  Google Scholar 

  • Markl J, Kempter B, Linzen B, Bijholt MMC, Van Bruggen EFJ (1981) Hemocyanins in spiders, XVI[1]. Subunit topography and a model of the quaternary structure of Eurypelma hemocyanin. Hoppe Seylers Z Physiol Chem 362:1631–1641

    CAS  PubMed  Google Scholar 

  • Perbandt M, Guthohrlein E W, Rypniewski W, Idakieva K, Stoeva S, Voelter W, Genov N, Betzel C (2003) The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity. Biochemistry 42:6341–6346

    Article  CAS  PubMed  Google Scholar 

  • Ricchelli F, Beltramini M, Flamigni L, Salvato B (1987) Emission quenching mechanisms in Octopus vulgaris hemocyanin: steady state and time-resolved fluorescence studies. Biochemistry 26:6933–6939

    CAS  Google Scholar 

  • Richey B, Decker H, Gill SJ (1983) A direct test of the linearity between optical density change and oxygen binding in hemocyanins. In: Wood EJ (ed) Life chemistry reports: supplement 1. Harwood, New York, pp 309–312

  • Salvato B, Beltramini M (1987) Hemocyanins: molecular structure and reactivity of the binuclear copper site. Life Chem Rep 5:249–275

    CAS  Google Scholar 

  • Salvato B, Beltramini M (1990) Hemocyanins: molecular architecture, structure and reactivity of the binuclear copper active site. Life Chem Rep 8:1–47

    CAS  Google Scholar 

  • Savel-Niemann A, Markl J, Linzen B (1988) Hemocyanins in spiders. XXII. Range of allosteric interaction in a four-hexamer hemocyanin. Co-operativity and Bohr effect in dissociation intermediates. J Mol Biol 204:385–395

    CAS  PubMed  Google Scholar 

  • Shaklai N, Daniel E (1970) Fluorescence properties of hemocyanin from Levantina hierosolima. Biochemistry 9:564–568

    CAS  PubMed  Google Scholar 

  • Shaklai N, Daniel E (1972) Phosphorescence properties of hemocyanin from Levantina hierosolima. Biochemistry 11:2199–2203

    CAS  PubMed  Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    Google Scholar 

  • Van der Meer BW, Coker G, Chen SYS (1994) Resonance energy transfer. VCH, New York

  • Van Heel M, Dube P (1994) Quaternary structure of multihexameric arthropod hemocyanins. Micron 25:387–418

    Article  Google Scholar 

  • Van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81

    PubMed  Google Scholar 

  • Van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276:15563–15566

    PubMed  Google Scholar 

  • Voit R, Feldmaier-Fuchs G, Schweikardt T, Decker H, Burmester T (2000) Complete sequence of the 24-mer hemocyanin of the tarantula Eurypelma californicum. Structure and intramolecular evolution of the subunits. J Biol Chem 275:39339–39344

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Hol WG (1989) Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 Å resolution. J Mol Biol 209:249–279

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hermann Hartmann for instructive discussions and the Deutsche Forschungsgemeinschaft (DFG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Erker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erker, W., Hübler, R. & Decker, H. Structure-based calculation of multi-donor multi-acceptor fluorescence resonance energy transfer in the 4×6-mer tarantula hemocyanin. Eur Biophys J 33, 386–395 (2004). https://doi.org/10.1007/s00249-003-0371-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0371-2

Keywords

Navigation