Skip to main content
Log in

The microbial logic behind the prevalence of incomplete oxidation of organic compounds by acetogenic bacteria in methanogenic environments

  • Mini-review
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial degradation of organic material in methanogenic ecosystems is a multistep process in which subsequent groups use the products of the first groups of organisms in the chain as substrates. The acetogenic bacteria in these systems produce both H2 and acetate. In the present minireview a thermodynamic approach is taken to evaluate the logic behind this duality. The evaluation shows that at the H2 partial pressures that usually occur in methanogenic ecosystems the acetogenic oxidation of known acetogenic substrates such as propionate, butyrate, and benzoate yields more energy than their complete oxidation to H2/CO2. Also, H2 partial pressures needed to achieve complete hydrogenogenic oxidation of these acetogenic substrates would have to be so low that H2 would be virtually unavailable to the hydrogenotrophic bacteria, in casu the methanogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker HA (1936) On the biochemistry of the methane fermentation. Arch Mikrobiol 7:404–419

    Article  CAS  Google Scholar 

  2. Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    PubMed  CAS  Google Scholar 

  3. Bryant MP (1979) Microbial methane production—theoretical aspects. J Anim Sci 48:193–201

    CAS  Google Scholar 

  4. Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  5. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202 DOI: 10.1016/S0168-6496(98)00086-5

    Article  CAS  Google Scholar 

  6. Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiol Ecol 38:353–359

    Article  CAS  Google Scholar 

  7. Conrad R, Schütz H, Babbel M (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiol Ecol 45:281–289

    Article  CAS  Google Scholar 

  8. Dolfing J (1988) Acetogenesis. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms. John Wiley, New York, pp 349–376

    Google Scholar 

  9. Dolfing J (1992) The energetic consequences of hydrogen gradients in methanogenic ecosystems. FEMS Microbiol Ecol 101:183–187

    Article  CAS  Google Scholar 

  10. Dolfing J, Tiedje JM (1988) Acetate inhibition of methanogenic syntrophic benzoate degradation. Appl Environ Microbiol 54:1871–1873

    PubMed  CAS  Google Scholar 

  11. Hopkins BT, McInerney MJ, Warikoo V (1995) Evidence for an anaerobic syntrophic benzoate degradation threshold and isolation of the syntrophic benzoate degrader. Appl Environ Microbiol 61:526–530

    PubMed  CAS  Google Scholar 

  12. Jeris JS, McCarty PL (1965) The biochemistry of methane fermentation using 14C-tracers. J Water Pollut Control Fed 37:178–192

    CAS  Google Scholar 

  13. Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7

    PubMed  CAS  Google Scholar 

  14. Lee MJ, Zinder SH (1988) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2−CO2. Appl Environ Microbiol 54:124–129

    PubMed  CAS  Google Scholar 

  15. Lovley DJ, Klug MJ (1982) Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl Environ Microbiol 43:552–560

    PubMed  CAS  Google Scholar 

  16. McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    PubMed  CAS  Google Scholar 

  17. McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135

    Article  CAS  Google Scholar 

  18. Mountford DO Bryant MP (1982) Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 52:744–750

    Google Scholar 

  19. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    PubMed  CAS  Google Scholar 

  20. Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152

    Article  PubMed  Google Scholar 

  21. Smith MR, Mah RA (1980) Acetate as a sole carbon and energy source for growth of Methanosarcina strain 227. Appl Environ Microbiol 39:993–999

    PubMed  CAS  Google Scholar 

  22. Smith PH, Mah RA (1966) Kinetics of acetate metabolism during sludge digestion. Appl Microbiol 14:368–371

    PubMed  CAS  Google Scholar 

  23. Smolenski WJ, Robinson JA (1988) In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS Microbiol Ecol 53:95–100

    Article  CAS  Google Scholar 

  24. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  25. Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP, Carr NG (eds) The Microbe 1984. Part II: Prokaryotes and Eukaryotes. Cambridge University Press, Cambridge, UK pp 123–168

    Google Scholar 

  26. Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., a new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352 DOI: 10.1007/s002030050273

    Article  CAS  Google Scholar 

  27. Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT, Slater JH (eds) Microbial Interactions and Communities, Vol. 1. Academic Press, London, pp 323–356

    Google Scholar 

  28. Yang Y, McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597

    Article  CAS  Google Scholar 

  29. Zehnder AJB (1978) Ecology of methane formation. In: Mitchell R (ed). Water Pollution Microbiology, Vol 2. John Wiley & Sons, New York, pp 349–376

    Google Scholar 

  30. Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, nonhydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11

    Article  PubMed  CAS  Google Scholar 

  31. Zeikus JG (1983) Metabolic communication between biodegradative populations in nature. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Microbes in Their Natural Environments. Cambridge University Press, Cambridge, UK, pp 423–462

    Google Scholar 

  32. Zinder SH (1993) Physiological ecology of methanogens In: Ferry JG (ed) Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics. Chapman & Hall, New York, pp 128–206

    Google Scholar 

  33. Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic co-culture. Arch Microbiol 138:263–272

    Article  CAS  Google Scholar 

  34. Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2−CO2 for methanogenesis. Appl Environ Microbiol 38:996–1008

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dolfing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolfing, J. The microbial logic behind the prevalence of incomplete oxidation of organic compounds by acetogenic bacteria in methanogenic environments. Microb Ecol 41, 83–89 (2001). https://doi.org/10.1007/s002480000076

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002480000076

Keywords

Navigation