Skip to main content

Advertisement

Log in

Bacterial Succession in Salt Marsh Soils Along a Short-term Invasion Chronosequence of Spartina alterniflora in the Yellow River Estuary, China

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

As an exotic plant species, Spartina alterniflora seriously threatens native ecosystem function in Chinese coastal regions. Unveiling the dynamics of soil bacteria community during its invasion is essential for a better understanding of related biogeochemical processes, while the shift in soil bacterial community over invasive time remains unclear. A short-term chronosequence was identified to assess the impacts of Spartina alterniflora invasion on soil nutrients and bacterial community composition and structure (using 16S rRNA gene high-throughput sequencing) over the time of invasion (i.e., (1) at least 10 years, (2) nearly 5 years, (3) less than 2 years, and (4) in native salt marshes or 0 years) in the Yellow River Estuary. The results exhibited an orderly change in the soil physicochemical properties and bacterial community composition over the invasion time. Soil pH showed a significant decrease with the accumulation of soil organic matter (SOM), whereas soil nutrients such as soil dissolved organic carbon (DOC), total nitrogen (TN), nitrate (NO3), ammonium (NH4+), K+, and Mg2+ were generally increased with the age of the invasion. The number of operational taxonomic units (OTUs, 97% similarity level) exhibited a decreasing trend, which suggested a decline in bacterial diversity with the invasion age. The dominant groups at the phylum level were Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, and Gemmatimonadetes (the sum of relative abundance was > 70% across all samples). The relative abundances of Chloroflexi and Gemmatimonadetes steadily decreased, while the abundance of Bacteroidetes significantly increased with the plant invasion. The distribution pattern of the soil bacteria was clearly separated according to the principal coordinate analysis (PCoA) and canonical correspondence analysis (CCA) in native and invaded salt marshes. The variation in the soil bacterial community was tightly associated with the soil physicochemical properties (Mantel test, P < 0.05). Variance partitioning analysis (VPA) showed that plant traits explained 4.95% of the bacterial community variation, and soil variables explained approximately 26.96% of the variation. Network analysis also revealed that plant invasion strengthens the interaction among soil bacterial communities. Overall, our findings highlight the bacterial community succession during the Spartina alterniflora invasion in coastal salt marsh soils, which can provide insight regarding the association between soil development and invasive plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6

Similar content being viewed by others

References

  1. Aerts R, Ewald M, Nicolas M, Piat J, Skowronek S, Lenoir J, Hattab T, Garzón-López CX, Feilhauer H, Schmidtlein S, Rocchini D, Decocq G, Somers B, Van De Kerchove R, Denef K, Honnay O (2017) Invasion by the alien tree Prunus serotina alters ecosystem functions in a temperate deciduous forest. Front Plant Sci 8:179. https://doi.org/10.3389/fpls.2017.00179

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arthur MA, Bray SR, Kuchle CR, Mcewan RW (2012) The influence of the invasive shrub, Lonicera maackii, on leaf decomposition and microbial community dynamics. Plant Ecol 213:1571–1582

    Google Scholar 

  3. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237

    CAS  PubMed  Google Scholar 

  4. Baldani JI, Videira SS, dos Santos Teixeira KR, Reis VM, de Oliveira ALM, Schwab S, de Souza EM, Pedraza RO, Baldani VLD, Hartmann A (2014) The family Rhodospirillaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes-alphaproteobacteria and betaproteobacteriafourth edn. Springer-Verlag, New York, pp 533–618

    Google Scholar 

  5. Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–415

    CAS  Google Scholar 

  6. Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    CAS  PubMed  Google Scholar 

  7. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. ICWSM 8:361–362

    Google Scholar 

  8. Belnap J, Phillips SL, Sherrod SK, Moldenke A (2005) Soil biota can change after exotic plant invasion: does this affect ecosystem processes? Ecology 86:3007–3017

    Google Scholar 

  9. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:1–14

    Google Scholar 

  10. Bu NS, Qu JF, Li ZL, Li G, Zhao H, Zhao B, Li B, Chen JK, Fang CM (2015) Effects of Spartina alterniflora invasion on soil respiration in the Yangtze river estuary, China. PLoS ONE 10(3):e0121571. https://doi.org/10.1371/journal.pone.0121571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733

    CAS  PubMed  Google Scholar 

  12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010a) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010b) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    CAS  PubMed  Google Scholar 

  14. Carey CJ, Beman JM, Eviner VT, Malmstrom CM, Hart SC (2015) Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Front Microbiol 6:466. https://doi.org/10.3389/fmicb.2015.00466

    Article  PubMed  PubMed Central  Google Scholar 

  15. Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of exotic invasive trees on nitrogen cycling: a case study in Central Spain. Biol Invasions 11:1973–1986. https://doi.org/10.1007/s10530-008-9374-3

    Article  Google Scholar 

  16. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  17. Chen YL, Ding JZ, Peng YF, Li F, Yang GB, Liu L, Qin SQ, Fang K, Yang YH (2016) Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. J Biogeogr 43:2027–2039. https://doi.org/10.1111/jbi.12806

    Article  Google Scholar 

  18. Cheng XL, Luo YQ, Chen JQ, Lin GH, Chen JK, Li B (2006) Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine island. Soil Biol Biochem 38:3380–3386

    CAS  Google Scholar 

  19. Cheng XL, Peng RH, Chen JQ, Luo YQ, Zhang QF, An SQ, Chen JK, Li B (2007) CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere 68:420–427

    CAS  PubMed  Google Scholar 

  20. Cheng XL, Chen JQ, Luo YQ, Henderson R, An SQ, Zhang QF, Chen JK, Li B (2008) Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma 145:177–184. https://doi.org/10.1016/j.geoderma.2008.02.013

    Article  CAS  Google Scholar 

  21. Cheng XL, Luo YQ, Xu Q, Lin GH, Zhang QF, Chen JK, Li B (2010) Seasonal variation in CH4 emission and its 13 C-isotopic signature from Spartina alterniflora and Scirpus mariqueter soils in an estuarine wetland. Plant Soil 327:85–94

    CAS  Google Scholar 

  22. Creamer RE, Hannula SE, Van Leeuwen JP, Stone D, Rutgers M, Schmelz RM, de Ruiter PC, Bohse Hendriksen N, Bolger T, Bouffaud ML, Buee M, Carvalho F, Costa D, Dirilgen T, Francisco R, Griffiths BS, Griffiths R, Martin F, Martins da Silva P, Mendes S, Morais PV, Pereira C, Philippot L, Plassart P, Redecker D, Römbke J, Sousa JP, Wouterse M, Lemanceau P (2016) Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl Soil Ecol 97:112–124

    Google Scholar 

  23. Cui J, Chen XP, Nie M, Fang SB, Tang BP, Quan ZX, Li B, Fang CM (2017) Effects of Spartina alterniflora invasion on the abundance, diversity, and community structure of sulfate reducing bacteria along a successional gradient of coastal salt marshes in China. Wetlands 37:221–232

    Google Scholar 

  24. D’Antonio CM, Hughes RF, Tunison JT (2011) Long-term impacts of invasive grasses and subsequent fire in seasonally dry Hawaiian woodlands. Ecol Appl 21:1617–1628

    PubMed  Google Scholar 

  25. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by nitrospira bacteria. Nature 528:504–509

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis KER, Sangwan P, Janssen PH (2011) Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environ Microbiol 13:798–805

    PubMed  Google Scholar 

  27. Dickens SJM, Dickens EB (2014) Exotic plant invasion alters chaparral ecosystem resistance and resilience pre- and post-wildfire. Biol Invasions 16:1119–1130

    Google Scholar 

  28. Ding LJ, Su JQ, Li H, Zhu YG, Cao ZH (2017) Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River delta, China. Soil Biol Biochem 104:59–67

    CAS  Google Scholar 

  29. Domènech R, Vilà M, Gesti J, Serrasolses I (2006) Neighbourhood association of Cortaderia selloana invasion, soil properties and plant community structure in Mediterranean coastal grasslands. Acta Oecol 29:171–177

    Google Scholar 

  30. Dostál P, Müllerová J, Pyšek P, Pergl J, Klinerová T (2013) The impact of an invasive plant changes over time. Ecol Lett 16:1277–1284

    PubMed  Google Scholar 

  31. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  32. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Google Scholar 

  34. Elgersma KJ, Ehrenfeld JG (2011) Linear and non-linear impacts of a non-native plant invasion on soil microbial community structure and function. Biol Invasions 13:757–768

    Google Scholar 

  35. Elgersma KJ, Ehrenfeld JG, Yu S, Vor T (2011) Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling. Oecologia 167:733–745

    PubMed  Google Scholar 

  36. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    CAS  PubMed  Google Scholar 

  37. Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, Pedrós-Alió C (2013) Ecology of marine bacteroidetes: a comparative genomics approach. ISME J 7:1026–1037

    PubMed  PubMed Central  Google Scholar 

  38. Fierer N, Bradford MA, Jackson RB (2007) Toward and ecological classification of soil bacteria. Ecology 88(6):1354–1364

    PubMed  Google Scholar 

  39. Freedman Z, Zak DR (2015) Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence. Environ Microbiol 17:3208–3218

    PubMed  Google Scholar 

  40. Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    CAS  PubMed  Google Scholar 

  41. Gaggini L, Rusterholz HP, Baur B (2017) The invasive plant Impatiens glandulifera affects soil fungal diversity and the bacterial community in forests. Appl Soil Ecol 124:335–343

    Google Scholar 

  42. Gao DZ, Li XF, Lin XB, Wu DM, Jin BS, Huang YP, Liu M, Chen X (2017) Soil dissimilatory nitrate reduction processes in the Spartina alterniflora invasion chronosequences of a coastal wetland of southeastern China: dynamics and environmental implications. Plant Soil 421:383–399

    CAS  Google Scholar 

  43. Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    CAS  PubMed  Google Scholar 

  44. Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976–985

    PubMed  Google Scholar 

  45. Hong YW, Liao D, Hu AY, Wang H, Chen JS, Khan S, Su JQ, Li H (2015) Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Can J Microbiol 61:1–11

    Google Scholar 

  46. Huang JX, Xu X, Wang M, Nie M, Qiu SY, Wang Q, Quan ZX, Xiao M, Li B (2016) Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh. Sci Rep 6:20384. https://doi.org/10.1038/srep20384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Inderjit, van der Putten WH (2010) Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol 25:512–519

    CAS  PubMed  Google Scholar 

  48. Jiang XT, Peng X, Deng GH, Sheng HF, Wang Y, Zhou HW, Tam NF (2013) Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb Ecol 66:96–104

    PubMed  Google Scholar 

  49. Jiao S, Liu ZS, Lin YB, Yang J, Chen WM, Wei GH (2016) Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biol Biochem 98:64–73

    CAS  Google Scholar 

  50. Jing X, Sanders NJ, Shi Y, Chu HY, Classen AT, Zhao K, Chen LT, Shi Y, Jiang YX, He JS (2015) The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat Commun 6:8159. https://doi.org/10.1038/ncomms9159

    Article  PubMed  Google Scholar 

  51. Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L, Nam S, Hong SG, Kim O, Chun J, Lee YK (2014) Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiol Ecol 89:465–475

    CAS  PubMed  Google Scholar 

  52. Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, Nemergut DR (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem 46:172–180

    CAS  Google Scholar 

  53. Kuever J (2014) The Family Desulfobulbaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes-alphaproteobacteria and betaproteobacteriafourth edn. Springer-Verlag, New York, pp 45–86

    Google Scholar 

  54. Kulmatiski A, Beard KH (2011) Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol Biochem 43:823–830

    CAS  Google Scholar 

  55. Lammel DR, Nüsslein K, Tsai SM, Cerri CC (2015) Land use, soil and litter chemistry drive bacterial community structures in samples of the rainforest and Cerrado (Brazilian Savannah) biomes in southern amazonia. Eur J Soil Biol 66:32–39

    CAS  Google Scholar 

  56. Landesman WJ, Nelson DM, Fitzpatrick MC (2014) Soil properties and tree species drive ß-diversity of soil bacterial communities. Soil Biol Biochem 76:201–209

    CAS  Google Scholar 

  57. Lankau RA, Nuzzo V, Spyreas G, Davis AS (2009) Evolutionary limits ameliorate the negative impact of an invasive plant. Proc Natl Acad Sci USA 106:15362–15367

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    CAS  Google Scholar 

  59. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Laughlin RJ, RüTting T, MüLler C, Watson CJ, Stevens RJ (2009) Effect of acetate on soil respiration, N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil. Appl Soil Ecol 42:25–30

    Google Scholar 

  61. Lee S, Ka J, Cho J (2008) Members of the phylum acidobacteria, are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285:263–269

    CAS  PubMed  Google Scholar 

  62. Leloup J, Baude M, Nunan N, Meriguet J, Dajoz I, Roux XL, Raynaud X (2018) Unravelling the effects of plant species diversity and aboveground litter input on soil bacterial communities. Geoderma 317:1–7

    Google Scholar 

  63. Levin LA, Neira C, Grosholz ED (2006) Invasive cordgrass modifies wetland trophic function. Ecology 87:419–432

    PubMed  Google Scholar 

  64. Liao JD, Boutton TW, Jastrow JD (2006) Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland. Soil Biol Biochem 38:3184–3196

    CAS  Google Scholar 

  65. Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2007) Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10:1351–1361

    CAS  Google Scholar 

  66. Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    CAS  PubMed  Google Scholar 

  67. Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, Liu XB, Wang GH (2014) High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol Biochem 70:113–122

    CAS  Google Scholar 

  68. Liu M, Yu Z, Yu X, Xue Y, Huang B, Yang J (2017a) Invasion by cordgrass increases microbial diversity and alters community composition in a mangrove nature reserve. Front Microbiol 8:2503. https://doi.org/10.3389/fmicb.2017.02503

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu W, Strong DR, Pennings SC, Zhang Y (2017b) Provenance by environment interaction of reproductive traits in the invasion of Spartina alterniflora in China. Ecology 98:1591–1599

    PubMed  Google Scholar 

  70. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  PubMed  Google Scholar 

  72. Lunstrum A, Chen L (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biol Biochem 75:223–232

    CAS  Google Scholar 

  73. Macreadie PI, Hughes AR, Kimbro DL (2013) Loss of ‘blue carbon’ from coastal salt marshes following habitat disturbance. PLoS One 8:e69244. https://doi.org/10.1371/journal.pone.0069244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    CAS  Google Scholar 

  75. Mußmann M, Pjevac P, Krüger K, Dyksma S (2017) Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J 11:1276–1281

    PubMed  PubMed Central  Google Scholar 

  76. Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of Soil Analysis. Part 3. Chemical Methods. American Society of Agronomy, Wisconsin, pp 539–579

    Google Scholar 

  77. Nie M, Wang M, Li B (2009) Effects of salt marsh invasion by Sspartina alterniflora on sulfate-reducing bacteria in the Yangtze river estuary, China. Ecol Eng 35:1804–1808

    Google Scholar 

  78. O’Brien SL, Gibbons SM, Owens SM, Hamptonmarcell J, Johnston ER, Jastrow JD, Gilbert JA, Meyer F, Antonopoulos DA (2016) Spatial scale drives patterns in soil bacterial diversity. Environ Microbiol 18:2039–2051

    PubMed  PubMed Central  Google Scholar 

  79. Obi CC, Adebusoye SA, Ugoji EO, Ilori MO, Amund OO, Hickey WJ (2016) Microbial communities in sediments of Lagos Lagoon, Nigeria: elucidation of community structure and potential impacts of contamination by municipal and industrial wastes. Front Microbiol 7:1213. https://doi.org/10.3389/fmicb.2016.01213

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oelofse M, Birch-Thomsen T, Magid J, Neergaard AD, Deventer RV, Bruun S, Hill T (2015) The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa. Biol Invasions 18:445–456

    Google Scholar 

  81. Orwin KH, Dickie IA, Holdaway R, Wood JR (2018) A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biol Biochem 117:27–35

    CAS  Google Scholar 

  82. Park S, Yoshizawa S, Inomata K, Kogure K, Yokota A (2012) Halioglobus japonicus gen. nov., sp. nov. and Halioglobus pacificus sp. nov., members of the class Gammaproteobacteria isolated from seawater. Int J Syst Evol Microbiol 62:1784–1789

    CAS  PubMed  Google Scholar 

  83. Peralta RM, Ahn C, Gillevet PM (2013) Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands. Sci Total Environ 443:725–732

    CAS  PubMed  Google Scholar 

  84. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    CAS  PubMed  Google Scholar 

  85. R Development Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Available online at: http://www.R-project.org/

  86. Razanamalala K, Razafimbelo T, Maron PA, Ranjard L, Chemidlin N, Lelièvre M, Dequiedt S, Ramaroson VH, Marsden C, Becquer T, Trap J, Blanchart E, Bernard L (2018) Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME J 12:451–462. https://doi.org/10.1038/ismej.2017.178

    Article  PubMed  Google Scholar 

  87. Rodrigues RR, Pineda RP, Barney JN, Nilsen ET, Barrett JE, Williams MA (2015) Plant invasions associated with change in root-zone microbial community structure and diversity. PLoS ONE 10(10):e0141424. https://doi.org/10.1371/journal.pone.0141424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rout ME, Callaway RM (2012) Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’. Ann Bot-London 110:213–222

    Google Scholar 

  89. Simas T, Nunes JP, Ferreira JG (2001) Effects of global climate change on coastal salt marshes. Ecol Model 139:1–15

    CAS  Google Scholar 

  90. Souza-Alonso P, Novoa A, González L (2014) Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biol Biochem 79:100–108

    CAS  Google Scholar 

  91. Souza-Alonso P, Guisande-Collazo A, González L (2015) Gradualism in Acacia dealbata Link invasion: impact on soil chemistry and microbial community over a chronological sequence. Soil Biol Biochem 80:315–323

    CAS  Google Scholar 

  92. Spencer KL, Harvey GL (2012) Understanding system disturbance and ecosystem services in restored saltmarshes: integrating physical and biogeochemical processes. Estuar Coast Shelf Sci 106:23–32

    Google Scholar 

  93. Stefanowicz AM, Majewska ML, Stanek M, Nobis M, Zubek S (2018) Differential influence of four invasive plant species on soil physicochemical properties in a pot experiment. J Soils Sediments 18:1409–1423

    CAS  Google Scholar 

  94. Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079

    PubMed  PubMed Central  Google Scholar 

  95. Strayer DL (2012) Eight questions about invasions and ecosystem functioning. Ecol Lett 15:1199–1210

    PubMed  Google Scholar 

  96. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sørensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626

    CAS  PubMed  Google Scholar 

  97. Suzuki D, Li ZL, Cui XX, Zhang CF, Katayama A (2014) Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov. and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int J Syst Evol Microbiol 64:3081–3086

    CAS  PubMed  Google Scholar 

  98. Tamura M, Tharayil N (2014) Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems. New Phytol 203:110–124

    CAS  PubMed  Google Scholar 

  99. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Go R, Rahim RA, Husni MH, Chun J, Adams JM (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb Ecol 64:474–484

    PubMed  Google Scholar 

  100. van Kleunen M, Bossdorf O, Dawson W (2018) The ecology and evolution of alien plants. Annu Rev Ecol Evol Syst 49:25–47

    Google Scholar 

  101. Vilã M, Espinar JL, Hejda M, Hulme PE, Jaroå ÃV, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    PubMed  Google Scholar 

  102. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Google Scholar 

  103. Wang RZ, Lin Y, Zhang LQ (2010) Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze estuary, China. Ecol Eng 36:799–806

    Google Scholar 

  104. Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, He J, Liu X, Zhang L, Zhang E (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487

    Google Scholar 

  106. Wolkovich EM, Lipson DA, Virginia RA, Cottingham KL, Bolger DT (2010) Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Glob Chang Biol 16:1351–1365

    Google Scholar 

  107. Yan J, Wang L, Hu Y, Tsang YF, Zhang Y, Wu J, Fu X, Sun Y (2018) Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319:194–203

    CAS  Google Scholar 

  108. Yang W, An SQ, Zhao H, Xu LQ, Qiao YJ, Cheng XL (2016a) Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecol Eng 86:174–182

    Google Scholar 

  109. Yang W, Jeelani N, Leng X, Cheng XL, An SQ (2016b) Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China. Sci Rep 6:26880. https://doi.org/10.1038/srep26880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yang W, Zhao H, Leng X, Cheng XL, An SQ (2017) Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China. Catena 156:281–289

    CAS  Google Scholar 

  111. Yu XJ, Yu D, Lu ZJ, Ma KP (2005a) A new mechanism of invader success: Exotic plant inhibits natural vegetation restoration by changing soil microbe community. Chin Sci Bull 50:1105–1112

    CAS  Google Scholar 

  112. Yu Y, Lee C, Kim J, Hwang S (2005b) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–678

    CAS  PubMed  Google Scholar 

  113. Yuan JJ, Ding WX, Liu DY, Xiang J, Lin YX (2014) Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh. Appl Microbiol Biotechnol 98:1817–1829

    CAS  PubMed  Google Scholar 

  114. Yuan JJ, Ding WX, Liu DY, Kang H, Freeman C, Xiang J, Lin YX (2015) Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob Chang Biol 21:1567–1580

    PubMed  Google Scholar 

  115. Zeleke J, Sheng Q, Wang JG, Huang MY, Xia F, Wu JH, Quan ZX (2013) Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front Microbiol 4:243. https://doi.org/10.3389/fmicb.2013.00243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zeng Q, An S, Liu Y (2017) Soil bacterial community response to vegetation succession after fencing in the grassland of China. Sci Total Environ 609:2–10

    CAS  PubMed  Google Scholar 

  117. Zhang YH, Ding WX, Luo JF, Donnison A (2010) Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biol Biochem 42:1712–1720

    CAS  Google Scholar 

  118. Zhang QF, Peng JJ, Chen Q, Li XF, Xu CY, Yin HB, Yu S (2011) Impacts of Spartina alterniflora invasion on abundance and composition of ammonia oxidizers in estuarine sediment. J Soils Sediments 11:1020–1031

    Google Scholar 

  119. Zheng Y, Bu NS, Long XE, Sun J, He CQ, Liu XY, Cui J, Liu DX, Chen XP (2017) Sulfate reducer and sulfur oxidizer respond differentially to the invasion of Spartina alterniflora in estuarine salt marsh of China. Ecol Eng 99:182–190

    Google Scholar 

  120. Zheng J, Li JJ, Lan YQ, Liu SD, Zhou LT, Luo Y, Liu JF, Wu ZY (2018a) Effects of Spartina alterniflora invasion on Kandelia candel rhizospheric bacterial community as determined by high-throughput sequencing analysis. J Soils Sediments:1–13. https://doi.org/10.1007/s11368-018-2002-7

  121. Zheng YL, Burns JH, Liao ZY, Li YP, Yang J, Chen YJ, Zhang JL, Zheng YG (2018b) Species composition, functional and phylogenetic distances correlate with success of invasive Chromolaena odorata in an experimental test. Ecol Lett 21:1211–1220

    PubMed  Google Scholar 

  122. Zhou JZ, Deng Y, Luo F, He ZL, Tu QC, Zhi XY (2010) Functional molecular ecological networks. mBio 1:e00169-10

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R & D Program of China (No. 2017YFC0505906), the Fundamental Research Funds for the Central Universities (No. 310430001), and the Interdiscipline Research Funds of Beijing Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Bai.

Electronic supplementary material

ESM 1

(DOC 2788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Bai, J., Zhao, Q. et al. Bacterial Succession in Salt Marsh Soils Along a Short-term Invasion Chronosequence of Spartina alterniflora in the Yellow River Estuary, China. Microb Ecol 79, 644–661 (2020). https://doi.org/10.1007/s00248-019-01430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01430-7

Keywords

Navigation