Skip to main content

Advertisement

Log in

Dry Season Constrains Bacterial Phylogenetic Diversity in a Semi-Arid Rhizosphere System

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The rhizosphere is viewed as a deterministic environment led by the interaction between plants and microorganisms. In the case of semi-arid plants, this interaction is strengthened by the harshness of the environment. We tested the hypothesis that dry season represents a constraint on the bacterial diversity of the rhizosphere from semi-arid plants. To accomplish this, we sampled two leguminous species at five locations during the dry and rainy seasons in the Caatinga biome and characterised bacterial community structures using qPCR and 16S rRNA sequencing. We found that the main differences between seasons were due to reduced phylogenetic diversity caused by dryness. Variation partitioning indicated that environmental characteristics significant impacts in β-diversity. Additionally, distance decay relationship and taxa area relationship indicate a higher spatial turnover at the rainy season. During the dry season, decreased bacterial abundance is likely due to the selection of resistant or resilient microorganisms; with the return of the rain, the sensitive populations start to colonise the rhizosphere by a process that is strongly influenced by environmental characteristics. Thus, we propose that the reduction of PD and strong influence of environmental parameters on the assemblage of these communities make them prone to functional losses caused by climatic disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rotenberg E, Yakir D (2010) Contribution of semi-arid forests to the climate system. Science 327:451–454. doi:10.1126/science.1179998

    Article  CAS  PubMed  Google Scholar 

  2. Kavamura VN, Santos SN, Da Silva JL et al (2012) Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res. doi:10.1016/j.micres.2012.12.002

    PubMed  Google Scholar 

  3. Taketani RG, Kavamura VN, Mendes R (2014) Functional congruence of rhizosphere microbial communities associated to leguminous tree from Brazilian semiarid region. Environ Microbiol Rep. doi:10.1111/1758-2229.12187

    Google Scholar 

  4. Kavamura VN, Taketani RG, Lançoni MD et al (2013) Water regime influences bulk soil and rhizosphere of cereus jamacaru bacterial communities in the Brazilian caatinga biome. PLoS One 8, e73606. doi:10.1371/journal.pone.0073606

    Article  CAS  Google Scholar 

  5. Placella SA, Brodie EL, Firestone MK (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci U S A 109:10931–10936. doi:10.1073/pnas.1204306109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barnard RL, Osborne CA, Firestone MK (2014) Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J 9:946–957. doi:10.1038/ismej.2014.192

    Article  PubMed Central  Google Scholar 

  7. Oliveira G, Araújo MB, Rangel TF et al (2012) Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodivers Conserv 21:2913–2926. doi:10.1007/s10531-012-0346-7

    Article  Google Scholar 

  8. Engelbrecht BMJ, Comita LS, Condit R et al (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82. doi:10.1038/nature05747

    Article  CAS  PubMed  Google Scholar 

  9. Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci U S A 104:17430–17434. doi:10.1073/pnas.0704350104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi:10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  11. Souza DC, Oyama MD (2010) Climatic consequences of gradual desertification in the semi-arid area of northeast Brazil. Theor Appl Climatol 103:345–357. doi:10.1007/s00704-010-0302-y

    Article  Google Scholar 

  12. Cavalcanti ER, Coutinho SFS (2005) Desertification in the northeast of brazil: the natural resources use and the land degradation. Soc Nat 1:891–900

    Google Scholar 

  13. Leal IR, Cardoso M, Silva DA et al (2005) Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conserv Biol 19:701–706

    Article  Google Scholar 

  14. Lançoni MD, Taketani RG, Kavamura VN, de Melo IS (2013) Microbial community biogeographic patterns in the rhizosphere of two Brazilian semi-arid leguminous trees. World J Microbiol Biotechnol. doi:10.1007/s11274-013-1286-4

    PubMed  Google Scholar 

  15. Barnard RL, Osborne C a, Firestone MK (2014) Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. ISME J 1–12. doi: 10.1038/ismej.2014.192

  16. Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241. doi:10.1038/ismej.2013.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Queiroz LP (2006) The Brazilian caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. In: Penninigton RT, Lewis GP, Ratter JA (eds). Royal Botanical Garden, Edinburgh, pp 113–149

  18. Caruso T, Chan Y, Lacap DC et al (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413. doi:10.1038/ismej.2011.21

    Article  PubMed  PubMed Central  Google Scholar 

  19. Taketani RGRGG, dos Santos HF, van Elsas JD et al (2009) Characterisation of the effect of a simulated hydrocarbon spill on diazotrophs in mangrove sediment mesocosm. Antonie Van Leeuwenhoek 96:343–354. doi:10.1007/s10482-009-9351-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sogin MLL, Morrison HGG, Huber JAA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth0510-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  23. Caporaso JG, Bittinger K, Bushman FD et al (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi:10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  24. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  25. Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  26. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinforma 12:38. doi:10.1186/1471-2105-12-38

    Article  Google Scholar 

  27. McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10, e1003531. doi:10.1371/journal.pcbi.1003531

    Article  PubMed  PubMed Central  Google Scholar 

  28. ter Braak Šmilauer, P. CJF (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). 500.

  29. Winter C, Matthews B, Suttle CA (2013) Effects of environmental variation and spatial distance on Bacteria, Archaea and viruses in sub-polar and arctic waters. ISME J 7:1507–1518. doi:10.1038/ismej.2013.56

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oksanen P (2010) Vegan 1.17-0

  31. Legendre P, Borcard D, Peres-Neto P (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  32. Arrhenius O (1921) Species and area. J Ecol 9:95–99

    Article  Google Scholar 

  33. Zinger L, Boetius A, Ramette A (2014) Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol 23:954–964. doi:10.1111/mec.12640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Article  Google Scholar 

  35. Manzoni S, Schimel JP, Porporato A (2012) Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938

    Article  PubMed  Google Scholar 

  36. Bachar A, Al-Ashhab A, Soares MIM et al (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microb Ecol 60:453–461. doi:10.1007/s00248-010-9727-1

    Article  PubMed  Google Scholar 

  37. Silver WL, Lugo AE, Keller M (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–328. doi:10.1007/BF00996995

    Google Scholar 

  38. Carson JK, Gonzalez-Quiñones V, Murphy DV et al (2010) Low pore connectivity increases bacterial diversity in soil. Appl Environ Microbiol 76:3936–3942. doi:10.1128/AEM.03085-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu S, Chapin FS, Firestone MK et al (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    Article  CAS  PubMed  Google Scholar 

  40. Holmes A, Bowyer J, Holley M et al (2000) Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol Ecol 33:111–120

    Article  CAS  PubMed  Google Scholar 

  41. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. doi:10.1038/nrmicro2504

    Article  CAS  PubMed  Google Scholar 

  42. Evans SE, Wallenstein MD (2014) Climate change alters ecological strategies of soil bacteria. Ecol Lett 17:155–164. doi:10.1111/ele.12206

    Article  PubMed  Google Scholar 

  43. Rodrigues JLM, Pellizari VH, Mueller R et al (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci U S A 110:988–993. doi:10.1073/pnas.1220608110

    Article  CAS  PubMed  Google Scholar 

  44. Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37:112–129. doi:10.1111/j.1574-6976.2012.00343.x

    Article  CAS  PubMed  Google Scholar 

  45. Barthès A, Ten-Hage L, Lamy A et al (2014) Resilience of aggregated microbial communities subjected to drought—small-scale studies. Microb Ecol. doi:10.1007/s00248-014-0532-0

    PubMed  Google Scholar 

  46. Thuiller W, Lavergne S, Roquet C et al (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534. doi:10.1038/nature09705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Cosme Corrêa dos Santos (UEFS) and Jorge Yoshio Tamashiro (University of Campinas) in identifying the plant species Mimosa tenuiflora and Piptadenia stipulacea (Benth.) Ducke, respectively. RGT was a recipient of a postdoctoral grant from FAPESP (2010/50799-7). This study was supported by Embrapa. The authors thank João Luiz da Silva, Dr. Rodrigo Mendes and Dr. Suikinai Santos for their support during sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Gouvêa Taketani.

Ethics declarations

This project was conducted with the authorisation of the Institute of Environment and Renewable Natural Resources (IBAMA), process number 02001.004527/2011-90, and did not involve endangered or protected species.

Electronic Supplementary Material

Additional Supporting Information may be found in the online version of this article:

Appendix S1 Variation partitioning of bacterial community composition using partial redundancy analysis (RDA).

ESM 1

(DOC 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taketani, R.G., Lançoni, M.D., Kavamura, V.N. et al. Dry Season Constrains Bacterial Phylogenetic Diversity in a Semi-Arid Rhizosphere System. Microb Ecol 73, 153–161 (2017). https://doi.org/10.1007/s00248-016-0835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0835-4

Keywords

Navigation