Skip to main content
Log in

Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmad E, Zaidi A, Khan MS, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen-fixing microorganism and host legumes. In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 29–44

    Chapter  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  3. Alzubaidy SK (2012) The resistance of locally isolated Serratia marcescens to heavy metals chlorides and optimization of some environmental factors. J Environ Occup Sci 1:37–42

    Article  Google Scholar 

  4. Ansari MI, Mazood F, Malik A (2011) Bacterial biosorption: a technique for remediation of heavy metals. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology, agricultural and environmental applications. Springer, New York, pp 283–319

    Chapter  Google Scholar 

  5. Arcondéguy T, Jack R, Merrick M (2001) PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arguello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248

    Article  PubMed  CAS  Google Scholar 

  7. Atlas RM (2010) Handbook of microbiological media, 4th edn. CRC, Boca Raton

    Book  Google Scholar 

  8. Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H, Jagtap P, Linke B, Lederer H, Meyer F, Schuster SC (2003) Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci U S A 100:11690–11695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Balla E, Dicks LMT, Du Toit M, Van Der Merwe MJ, Holzapfel WH (2000) Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl Environ Microbiol 66:1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barua S, Tripathi S, Chakraborty A, Ghosh S, Chakrabarti K (2012) Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils. Microbiol Res 167:95–102

    Article  PubMed  Google Scholar 

  11. Bell KS, Sebaihia M, Pritchard L, Holden MT, Hyman LJ, Holeva MC, Thomson NR, Bentley SD, Churcher LJ, Mungall K et al (2004) Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A 101:11105–11110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beard SJ, Hashim R, Membrillo-Hernández J, Hughes MN, Poole RK (1997) Zinc (II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Mol Microbiol 25:883–891

    Article  CAS  PubMed  Google Scholar 

  13. Berge O, Heulin T, Achouak W, Richard C, Bally R, Balandreau J (1991) Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37:195–203

    Article  Google Scholar 

  14. Bharti RK, Srivastava S, Thakur IS (2014) Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide. PLoS One 9:e91300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bharti RK, Srivastava S, Thakur IS (2014) Production and characterization of biodiesel from carbon dioxide concentrating chemolithotrophic bacteria, Serratia sp. ISTD04. Bioresource Technol 153:189–197

    Article  CAS  Google Scholar 

  16. Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201

    PubMed  PubMed Central  Google Scholar 

  17. Cavalcante V, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with the sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  18. Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA, Palomares AJ (2005) Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  19. Carrillo-Gonzalez R, Gonzalez-Chavez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92

    Article  CAS  Google Scholar 

  20. Coombs JM, Barkay T (2004) Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 70:1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, Chisholm SW (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770

    Article  CAS  PubMed  Google Scholar 

  22. Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M, Shu WS (2013) Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol 15:2431–2444

    Article  CAS  PubMed  Google Scholar 

  23. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron C (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16:659–718

    Article  CAS  Google Scholar 

  24. Cristani M, Naccari C, Nostro A, Pizzimenti A, Trombetta D, Pizzimenti F (2012) Possible use of Serratia marcescens in toxic metal biosorption (removal). J Environ Sci & Pollut Res 19:161–168

    Article  CAS  Google Scholar 

  25. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol Biochem 30:983–993

    Article  CAS  Google Scholar 

  27. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162

    Article  PubMed  CAS  Google Scholar 

  29. Deng ZS, Zhao LF, Kong ZY, Yang WQ, Lindström K, Wang ET, Wei GH (2011) Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 3:463–475

    Article  CAS  Google Scholar 

  30. Drewniak L, Rajpert L, Mantur A, Sklodowska A (2014) Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization. BioMed Res Int. doi:10.1155/2014/841892

  31. Egler M, Grosse C, Grass G, Nies DH (2005) Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli. J Bacteriol 187:2297–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Earl DA, vonHoldt BM (2011) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genet Resour 4:359–361

    Article  Google Scholar 

  33. El-Azeem SAMA, Mehana TA, Shabayek AA (2007) Some plant growth promoting traits of rhizobacteria isolated from Suez Canal region, Egypt. Afr Crop Sci Conf 8:1517–1525

    Google Scholar 

  34. Engelhart S, Saborowski F, Krakau M, Scherholz-Schlosser G, Heyer I, Exner M (2003) Severe Serratia liquefaciens sepsis following vitamin C infusion treatment by a naturopathic practitioner. J Clin Microbiol 41:3986–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  36. Fan LM, Maa ZQ, Liang JQ, Li HF, Wang ET, Wei GH (2011) Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresour Technol 102:703–709

    Article  CAS  PubMed  Google Scholar 

  37. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fallik E, Hartel PG, Robson RL (1993) Presence of a vanadium nitrogenase in Azotobacter paspali. Appl Environ Microbiol 59:1883–1886

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Felske A, Engelen B, Nübel U, Backhaus H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162–4167

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  41. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grass G, Thakali K, Klebba PE, Thieme D, Muller A, Wildner GF, Rensing C (2004) Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol 186:5826–5833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grilli J, Romano M, Bassetti F, Cosentino-Lagomarsino M (2014) Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers. Nucleic Acids Res 42:6850–6860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grimont PA, Grimont F, Irino K (1982) Biochemical characterization of Serratia liquefaciens sensu stricto, Serratia proteomaculans, and Serratia grimesii sp. nov. Curr Microbiol 7:69–74

  45. Grimont F, Grimont PAD (2006) The genus Serratia. Prokaryotes 6:219–244

    Google Scholar 

  46. Grohskopf LA, Roth VR, Feikin DR, Arduino MJ, Carson LA, Tokars JI, Holt SC, Jensen BJ, Hoffman RE, Jarvis WR (2001) Serratia liquefaciens bloodstream infections from contamination of epoetin alfa at a hemodialysis center. N Engl J Med 344:1491–1497

    Article  CAS  PubMed  Google Scholar 

  47. Gunaseelan C, Ruban P (2011) Heavy metal resistance bacterium isolated from Krishna-Godavari basin. Bay Bengal Int J Environ Sci 1:1856–1864

    CAS  Google Scholar 

  48. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  50. Handley KM, VerBerkmoes NC, Steefel CI, Williams KH, Sharon I, Miller CS, Frischkorn KR, Chourey K, Thomas BC, Shah MB, Long PE, Hettich RL, Banfield JF (2013) Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. ISME J 74:800–816

    Article  CAS  Google Scholar 

  51. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  52. Hao X, Xie P, Johnstone L, Miller SJ, Rensing C, Wei G (2012) Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Appl Environ Microbiol 78:5384e94

    Google Scholar 

  53. Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, Barry K, Tringe SG, Watson DB, He Z, Hazen TC, Tiedje JM, Rubin EM, Zhou J (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 4:660–672

    Article  CAS  PubMed  Google Scholar 

  54. Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  55. Horneck DA, Sullivan DM, Owen JS, Hart JM (2011) Soil test interpretation guide. EC 1478. Oregon State University Extension Service, Corvallis

    Google Scholar 

  56. Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang LN, Tang FZ, Song YS, Wan CY, Wang SL, Liu WQ, Shu WS (2011) Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings. FEMS Microbiol Ecol 78:439–450

    Article  CAS  PubMed  Google Scholar 

  58. Huergo LF, Merrick M, Pedrosa FO, Chubatsu LS, Araujo LM, Souza EM (2007) Ternary complex formation between AmtB, Glnz and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol Microbiol 66:1523–1535

    CAS  PubMed  Google Scholar 

  59. Iguchi A, Nagaya Y, Pradel E, Ooka T, Ogura Y, Katsura K, Kurokawa K, Oshima K, Hattori M, Parkhill J, Sebaihia M, Coulthurst SJ, Gotoh N, Thomson NR, Ewbank JJ, Hayashi T (2014) Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen. Genome Biol Evol 6:2096–2110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Inesi G, Pilankatta R, Tadini-Buoninsegni F (2014) Biochemical characterization of P-type copper ATPases. Biochem J 463:167–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jafarzade M, Mohamad S, Usup G, Ahmad A (2012) Heavy-metal tolerance and antibiotic susceptibility of red pigmented bacteria isolated from marine environment. Nat Resour 3:171–174

    Google Scholar 

  62. Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, Li L (2008) Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother 61:1003–1006

    Article  CAS  PubMed  Google Scholar 

  63. Juarez-Verdayes MA, Ramon-Perez ML, Flores-Paez LA, Camarillo-Marquez O, Zenteno JC, Jan-Roblero J, Cancino-Diaz ME, Cancino-Diaz JC (2013) Staphylococcus epidermidis with the icaA /icaD /IS256 genotype and protein or protein/extracellular-DNA biofilm is frequent in ocular infections. J Med Microbiol 62:1579–1587

    Article  CAS  PubMed  Google Scholar 

  64. Kefalogianni I, Flouri F, Balis C (1995) Occurrence, isolation and identification of Azospirillum strains in Greece. In: Fendrik I, del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, vol 37, NATO ASI Series., pp 461–465

    Chapter  Google Scholar 

  65. Kroer N, Barkay T, Sørensen S, Weber D (1998) Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant. FEMS Microbiol Ecol 25:375–384

    Article  CAS  Google Scholar 

  66. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  67. Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013) Bacterial community structure from the perspective of the uranium ore deposits of Domiasiat in India. Proc Natl Acad Sci India Sect B Bio Sci 83:485–497

    Article  Google Scholar 

  68. Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013) Uranium (U)-tolerant bacterial diversity from U ore deposits of Domiasiat in North-East India and their prospective utilization in bioremediation. Microbes Environ 28:33–41

    Article  PubMed  Google Scholar 

  69. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  70. Lawrence JG (2005) Common themes in the genome strategies of pathogens. Curr Opin Genet Dev 15:584–588

    Article  CAS  PubMed  Google Scholar 

  71. Lawrence JG, Retchless AC (2009) The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol Biol 532:29–53

    Article  CAS  PubMed  Google Scholar 

  72. Lazaro-Diez M, Acosta F, Remuzgo-Martinez S, Ocampo-Sosa A, Ocejo-Vinyals JG, Bravo J, El Aamri F, Escuela O, Martinez-Martinez L, Ramos-Vivas J (2015) Whole-genome sequence of Serratia liquefaciens HUMV-21, a cytotoxic, quorum-sensing, and biofilm-producing clinical isolate. Genome Announc 3:e00533-15

    Article  PubMed  PubMed Central  Google Scholar 

  73. Li Z, Ma Z, Hao X, Wei G (2012) Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings. J Bacteriol 194:1267–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liba CM, Ferrara FIS, Mangio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa CR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086

    Article  CAS  PubMed  Google Scholar 

  75. Luo SL, Chen L, Chen JL, Xiao X, Xu TY, Wan Y, Rao C, Liu CB, Lai C, Zeng GM (2011) Analysis and characterization of cultivable heavy metal resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    Article  CAS  PubMed  Google Scholar 

  76. Mahieu S, Frérot H, Vidal C, Galiana A, Heulin K, Maure L, Brunel B, Lefèbvre C, Escarré J, Cleyet-Marel JC (2011) Anthyllis vulneraria/Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd. Plant Soil 342:405–417

    Article  CAS  Google Scholar 

  77. Marrero J, Auling G, Coto O, Nies DH (2007) High-level resistance to cobalt and nickel but probably no transenvelope efflux: metal resistance in the Cuban Serratia marcescens strain C-1. Microb Ecol 53:123–133

    Article  CAS  PubMed  Google Scholar 

  78. Martinez RJ, Wang Y, Raimondo MA, Coombs JM, Barkay T, Sobecky PA (2006) Horizontal gene transfer of PIB-type ATPases among bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Appl Environ Microbiol 72:3111–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maynaud G, Brunel B, Yashiro E, Mergeay M, Cleyet-Marel JC, Le Quéré A (2014) CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a PIB-2-type ATPase involved in cadmium and zinc resistance. Res Microbiol 165:175–189

    Article  CAS  PubMed  Google Scholar 

  80. Mendez MO, Neilson JW, Maier RM (2008) Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol 74:3899–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Merrick M (2015) Post-translational modification of PII signal transduction proteins. Front Microbiol 5:1–6

    Article  Google Scholar 

  82. Milton JD, Reetha D (2012) Removal of heavy metals using bacteria isolated from lignite mining environment. Int J Recent Sci Res 3:1071–1078

    Google Scholar 

  83. Mira A, Martin-Cuadrado AB, D’Auria G, Rodriguez-Valera F (2010) The bacterial pan-genome: a new paradigm in microbiology. Int Microbiol 13:45–57

    CAS  PubMed  Google Scholar 

  84. Moreira FMS, Lange A, Klauberg-Filho O, Siqueira JO, Nóbrega RSA, Lima AS (2008) Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites. An Acad Bras Cienc 80:749–761

    Article  CAS  PubMed  Google Scholar 

  85. Mouser PJ, N’Guessan AL, Elifantz H, Holmes DW, Williams KH, Wilkins MJ, Long PE, Lovley DR (2009) Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater. Environ Sci Technol 43:4386–4392

    Article  CAS  PubMed  Google Scholar 

  86. Mossad SB (2000) The world’s first case of Serratia liquefaciens intravascular catheter-related suppurative thrombophlebitis and native valve endocarditis. Clin Microbiol Infect 6:559–560

    Article  CAS  PubMed  Google Scholar 

  87. Morales-Jimenez J, Vera-Ponce de Leon A, Garcia-Dominguez A, Martinez-Romero E, Zuñiga G, Hernandez-Rodriguez C (2013) Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb Ecol 66:200–210

    Article  CAS  PubMed  Google Scholar 

  88. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    Article  CAS  Google Scholar 

  90. Nageswaran N, Ramteke PW, VermaOP PA (2012) Antibiotic susceptibility and heavy metal tolerance pattern of Serratia marcescens isolated from soil and water. J Bioremed Biodeg 7:1000158

    Google Scholar 

  91. Navarro-Noya YE, Hernández-Mendoza E, Morales-Jiménez J, Jan-Roblero J, Martínez-Romero E, Hernández-Rodríguez C (2012) Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Appl Soil Ecol 62:52–60

    Article  Google Scholar 

  92. Navarro-Noya YE, Jan-Roblero J, González-Chávez MC, Hernández-Gama R, Hernández-Rodríguez C (2010) Bacterial communities associated to the rhizosphere of pioneer plants (Bahia xylopoda and Viguiera linearis) growing on heavy metals-contaminated soils. Anton Leeuw Int J G 97:335–349

    Article  CAS  Google Scholar 

  93. Navarro-Noya YE, Martínez-Romero E, Hernández-Rodríguez C (2013) Potential plant growth promoting and nitrogen fixing bacteria associated with pioneer plants growing on mine tailings. In: de Brujin FJ (ed) Molecular microbial ecology of rhizosphere, vol 2. Wiley, New York, pp 1003–1011

    Chapter  Google Scholar 

  94. Nelson KN, Neilson JW, Root RA, Chorover J, Maier RM (2015) Abundance and activity of 16S rRNA, AmoA and NifH bacterial genes during assisted phytostabilization of mine tailings. Int J Phytoremediat 17:493–502

    Article  CAS  Google Scholar 

  95. Nemergut DR, Martin AP, Schmidt SK (2004) Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. App Environ Microbiol 70:1160–1168

    Article  CAS  Google Scholar 

  96. Nicholson WL, Leonard MT, Fajardo-Cavazos P, Panayotova N, Farmerie WG, Triplett EW, Schuerger AC (2013) Complete genome sequence of Serratia liquefaciens strain ATCC 27592. Genome Announc 1:e00548–13

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  98. Nongkhlaw M, Kumar R, Acharya C, Joshi SR (2012) Occurrence of horizontal gene transfer of PIB-type ATPase genes among bacteria isolated from the uranium rich deposit of Domiasiat in North East India. PLoS One 7:e48199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. O’Carroll IP, Dos Santos PC (2011) Genomic analysis of nitrogen fixation. In: Ribbe MW (ed) Nitrogen fixation: methods and protocols. Humana, New York, pp 49–65

    Chapter  Google Scholar 

  100. Ogilvie LA, Hirsch PR, Johnston AWB (2008) Bacterial diversity of the broadbalk ‘classical’ winter wheat experiment in relation to long-term fertilizer inputs. Microb Ecol 56:525–537

    Article  PubMed  Google Scholar 

  101. Paffetti D, Scotti C, Gnocchi S, Fancelli S, Bazzicalupo M (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl Environ Microbiol 62:2279–2285

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pandey R, Swamy KV, Khetmalas MB (2013) Indole: a novel signaling molecule and its applications. Indian J Biotechnol 12:297–310

    CAS  Google Scholar 

  103. Pavlicek A, Hrda S, Flegr J (1999) Free Tree—freeware program for construction of phylogenetic trees on the basis of distance data and boot strapping/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biol 45:97–99

    CAS  Google Scholar 

  104. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Petersen LM, Tisa LS (2013) Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Can J Microbiol 59:627–640

    Article  CAS  PubMed  Google Scholar 

  106. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  107. Pinna A, Usai D, Sechi LA, Carta A, Zanetti S (2011) Detection of virulence factors in Serratia strains isolated from contact lens-associated corneal ulcers. Acta Ophthalmol 89:382–387

    Article  PubMed  Google Scholar 

  108. Piotrowska-Segeta Z, Cycon M, Kozdro J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246

    Article  Google Scholar 

  109. Poirier I, Hammann P, Kuhn L, Bertrand M (2013) Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: a proteome analysis. Aquat Toxicol 128–129:215–232

    Article  PubMed  CAS  Google Scholar 

  110. Rahman A, Sitepu IR, Tang SY, Hashidoko Y (2010) Salkowski’s reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Biosci Biotechnol Biochem 72:2202–2208

    Article  CAS  Google Scholar 

  111. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  112. Raju PN, Evans HJ, Seidler RJ (1972) An asymbiotic nitrogen-fixing bacterium from the root environment of corn. Proc Nat Acad Sci USA 69:3474–3478

  113. Rathnayake IVN, Megharaj M, Krishnamurti GSR, Bolan NS, Naidu R (2013) Heavy metal toxicity to bacteria—are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90:1195–1200

    Article  CAS  PubMed  Google Scholar 

  114. Reardon KF, Mosteller DC, Rogers JDB (2000) Biodegradation kinetics of benzene, toluene and phenol as single and mixed substrate for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

    Article  CAS  PubMed  Google Scholar 

  115. Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Remuzgo-Martinez S, Lazaro-Diez M, Mayer C, Aranzamendi-Zaldumbide M, Padilla D, Calvo J, Marco F, Martinez-Martinez L, Icardo JM, Otero A, Ramos-Vivas J (2015) Biofilm formation and quorum-sensing-molecule production by clinical isolates of Serratia liquefaciens. Appl Environ Microbiol 81:3306–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rohlf FJ (1998) NTSYS-pc 2.0e. Exeter Software, New York

    Google Scholar 

  118. Roth VR, Arduino MJ, Nobiletti J, Holt SC, Carson LA, Wolf CF, Lenes BA, Allison PM, Jarvis WR (2000) Transfusion-related sepsis due to Serratia liquefaciens in the United States. Transfusion 40:931–935

    Article  CAS  PubMed  Google Scholar 

  119. Rosenblueth M, Martínez L, Silva J, Martínez-Romero E (2004) Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol 27:27–35

    Article  CAS  PubMed  Google Scholar 

  120. Roy S, Gaind R, Chellani H, Mohanty S, Datta S, Singh AK, Basu (2013) Neonatal septicaemia caused by diverse clones of Klebsiella pneumoniae & Escherichia coli harbouring bla CTX-M-15 . Indian J Med Res 137:791–799

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  122. Sarkar D, Ferguson M, Datta R, Birnbaum S (2005) Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation and monitored natural attenuation. Environ Pollut 136:187–195

    Article  CAS  PubMed  Google Scholar 

  123. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Article  PubMed  PubMed Central  Google Scholar 

  124. Secretaria de Medio Ambiente y Recursos Naturales (2004) Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004, que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Secretaria de Medio Ambiente y Recursos Naturales

  125. Secretaria de Medio Ambiente y Recursos Naturales (2008) Programa nacional para la prevención y gestión integral de los residuos 2009–2012. Subsecretaria de Normatividad, Fomento Ambiental, Urbano y turístico. SEMARNAT, México DF

    Google Scholar 

  126. Servicio Geológico Mexicano (SGM) (2014) Anuario estadístico de la minería mexicana 2013. Servicio Geológico Mexicano, México DF

    Google Scholar 

  127. Sarma B, Acharya C, Joshi SR (2013) Characterization of metal tolerant Serratia spp. isolates from sediments of uranium ore deposit of Domiasiat in northeast India. Proc Natl Acad Sci India Sect B Biol Sci. doi:10.1007/s40011-013-0236-0

  128. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:28844–28854

    Article  CAS  Google Scholar 

  129. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  130. Selesi D, Schmid M, Hartmann A (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  132. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  133. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  134. Spiridonova EM, Berg IA, Kolganova TV, Ivanovsky RN, Kuznetsov BB, Tourova TP (2004) An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Mikrobiologiia 73:377–387

    CAS  PubMed  Google Scholar 

  135. Suppen N, Carranza M, Huerta M, Hernandez MA (2006) Environmental management and life cycle approaches in the Mexican mining industry. J Clean Prod 14:1101–1115

    Article  Google Scholar 

  136. Taira E, Iiyama K, Mon H, Mori K, Akasaka T, Tashiro K, Yasunaga-Aoki C, Lee JM, Kusakabe T (2014) Draft genome sequence of entomopathogenic Serratia liquefaciens strain FK01. Genome Announc 2:e00609–e00614

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188:7242–7256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Thomas G, Coutts G, Merrick M (2000) The glnKamtB operon. A conserved gene pair in prokaryotes. Trends Genet 16:11–14

    Article  CAS  PubMed  Google Scholar 

  141. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Troconis-Torres IG, Rojas-López M, Hernández-Rodríguez C, Villa-Tanaca L, Maldonado-Mendoza IE, Dorantes-Álvarez L, Tellez-Medina D, Jaramillo-Flores EM (2012) Biochemical and molecular analysis of some commercial samples of chilli peppers from Mexico. J Biomed Biotechnol. doi:10.1155/2012/873090

  143. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  144. van Heeswijk WC, Wen D, Clancy P, Jaggi R, Ollis DL, Westerhoff HV, Vasudevan SG (2000) The Escherichia coli signal transducers PII (GlnB) and GlnK form heterotrimers in vivo: fine tuning the nitrogen signal cascade. Proc Natl Acad Sci U S A 97:3942–3947

    Article  PubMed  PubMed Central  Google Scholar 

  145. van Hullebush ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Environ Sci Technol 2:9–33

    Google Scholar 

  146. van Cleemput O, Samater AH (1996) Nitrite in soils: accumulation and role in the formation of gaseous N compounds. Fertil Res 45:81–89

    Article  Google Scholar 

  147. Winkler FK (2006) Amt/MEP/Rh proteins conduct ammonia. Pflugers Arch 451:701–707

    Article  CAS  PubMed  Google Scholar 

  148. Yan Y, Ping S, Peng J, Han Y, Li L, Yang J, Dou Y, Li Y, Fan H, Fan Y, Li D, Zhan Y, Chen M, Lu W, Zhang W, Cheng Q, Jin Q, Lin M (2010) Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501. BMC Genomics 11:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Yu X, Li Y, Zhang C, Liu H, Liu J, Zheng W, Kang X, Leng X, Zhao K, Gu Y, Zhang X, Xiang Q, Chen Q (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS ONE 9:e106618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Yurgel SN, Rice J, Kahn ML (2012) Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins. MPMI 25:355–362

    Article  CAS  PubMed  Google Scholar 

  151. Visser WJF (1993) Contaminated land policies in some industrialised countries. Technical Soil Protection Committee (TCP), The Hague

    Google Scholar 

  152. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

  154. Zhan J, Sun Q (2012) Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiol Res 167:157–165

    Article  CAS  PubMed  Google Scholar 

  155. Zhang H-B, Yang M-X, Shi W, Zheng Y, Sha T, Zhao Z-W (2007) Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microb Ecol 54:705–712

    Article  CAS  PubMed  Google Scholar 

  156. Zhang Y, Pohlmann EL, Roberts GP (2005) GlnD is essential for NifA activation, NtrbC/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. J Bacteriol 187:1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All the authors thank Bruce Allan Larsen for reviewing the English version of this manuscript, and Luc Dendooven (CINVESTAV, IPN) for supporting the GC analyses. L.Z.-M., L H.-S., and E.G.-C. thank CONACYT for graduate scholarships awarded and also PIFI/BEIFI-IPN for a scholarship complement. L.V.-T. and C.H.-R. are fellows of EDI-IPN, COFAA-IPN, and SNI-CONACYT, with grants 20131171, 20141333, 20150981, and 20161850 from SIP-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Hernández-Rodríguez.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

Figure S1. PCR-DGGE banding profiles of the V6-V8 region of the 16S rRNA gene from non-rhizospheric mine tailings. Lanes 1, 2 and 3: Gualterio old mill of three different strata of a mine-tailing profile 40 cm high. Lane 1 and 2 correspond to the first and second strata. Lane 4: San Pantaleon trademill sample. Lane 5: San Martin drying lagoon sample. T: Bands identified as Thiobacillus sp.. S: Bands identified as Serratia liquefaciens. Th: Thermosporothrix hazakensis, Ub: uncultured bacterium (PDF 475 kb)

ESM 2

Figure S2. Maximum likelihood phylogenetic tree of the V6-V8 region of the 16S rRNA gene of S. liquefaciens sequences, constructed from DGGE-bands and haplotypes of the culturable strains. The Kimura 2-parameter substitution model was used. The numbers at the nodes indicate bootstrap values of 1000 replicates. Branch lengths are proportional to the number of substitutions per site (see scale bar). The sequence of Escherichia coli X80725 was used as outgroup. (PDF 15 kb)

ESM 3

Figure S3. DNA polymorphism example of some Serratia liquefaciens strains generated with RAPD-PCR. Fingerprintings were generated with primers a) ROTH A03 and b) MFG17. Strain in lane 1: 388, lane 2: 392, lane 3: 405, lane 4: 406, lane 5: 412, lane 6: 451, lane 7: 456, lane 8: 479, lane 9: 493, lane 10: 604, lane 11: 616, lane 12: 642. M: 1 kb DNA ladder. (PDF 28 kb)

ESM 4

Figure S4. Plasmidic DNAs from five Serratia liquefaciens strains. Lane 1: plasmids of Escherichia coli V517. Lanes 2-6: S. liquefaciens strains. Strain in lane 2: 450, lane 3: 661, lane 4: 406, lane 5: 219, lane 5: 47, and lane 6: 227. (PDF 44 kb)

ESM 5

Table S1. Conditions of biofilm formation of Serratia liquefaciens strains. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelaya-Molina, L.X., Hernández-Soto, L.M., Guerra-Camacho, J.E. et al. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. Microb Ecol 72, 324–346 (2016). https://doi.org/10.1007/s00248-016-0771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0771-3

Keywords

Navigation