Skip to main content
Log in

Culturable Endophytes of Medicinal Plants and the Genetic Basis for Their Bioactivity

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The bioactive compounds of medicinal plants are products of the plant itself or of endophytes living inside the plant. Endophytes isolated from eight different anticancer plants collected in Yunnan, China, were characterized by diverse 16S and 18S rRNA gene phylogenies. A functional gene-based molecular screening strategy was used to target nonribosomal peptide synthetase (NRPS) and type I polyketide synthase (PKS) genes in endophytes. Bioinformatic analysis of these biosynthetic pathways facilitated inference of the potential bioactivity of endophyte natural products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. All of the endophyte culture broth extracts demonstrated antiproliferative effects in at least one test assay, either cytotoxic, antibacterial or antifungal. From the perspective of natural product discovery, this study confirms the potential for endophytes from medicinal plants to produce anticancer, antibacterial and antifungal compounds. In addition, PKS and NRPS gene screening is a valuable method for screening isolates of biosynthetic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  2. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  PubMed  CAS  Google Scholar 

  3. Chen KK, Schmidt CF (1924) The action of ephedrine, the active prociple of the Chinese drug ma huang. J Pharmacol Exp Ther 24:339–357

    CAS  Google Scholar 

  4. Hoessel R, Leclerc S, Endicott JA, Nobel MEM, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D, Niederberger E, Tang WC, Eisenbrand G, Meijer L (1999) Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1:60–67

    Article  PubMed  CAS  Google Scholar 

  5. Lopez-Lazaro M, de la Pena NP, Pastor N, Martin-Cordero C, Navarro E, Cortes F, Ayuso MJ, Toro MV (2003) Anti-tumour activity of Digitalis purpurea L. subsp. heywoodii. Planta Med 69:701–704

    Article  PubMed  CAS  Google Scholar 

  6. NiceData (2004) Traditional Chinese medicines: natural sources and applications 2.1. CambridgeSoft Corp., Cambridge, MA

  7. Chinwala MG, Gao M, Dai J, Shao J (2003) In vitro anticancer activities of Leonurus heterophyllus Sweet (Chinese motherwort herb). J Altern Complem Med 9:511–518

    Article  Google Scholar 

  8. Miller K, Neilan B, Sze DMY (2008) Development of taxol and other endophyte produced anti-cancer agents. Recent Pat Anticancer Drug Discov 3:14–19

    Article  PubMed  CAS  Google Scholar 

  9. Li SH, Zhang HJ, Yao P, Sun HD, Fong HHS (2001) Taxane diterpenoids from the bark of Taxus yunnanensis. Phytochemistry 58:369–374

    Article  PubMed  CAS  Google Scholar 

  10. Evans BS, Robinson SJ, Kelleher NL (2011) Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genet Biol 48:49–61

    Article  PubMed  CAS  Google Scholar 

  11. Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2498

    Article  PubMed  CAS  Google Scholar 

  12. Konz D, Marahiel MA (1999) How do peptide synthetases generate structural diversity? Chem Biol 6:R39–R48

    Article  PubMed  CAS  Google Scholar 

  13. Moore BS, Kalaitzis JA, Xiang LK (2005) Exploiting marine actinomycete biosynthetic pathways for drug discovery. Antonie Van Leeuwenhoek 87:49–57

    Article  PubMed  CAS  Google Scholar 

  14. Santamaria J, Bayman P (2005) Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb Ecol 50:1–8

    Article  PubMed  Google Scholar 

  15. Gamboa MA, Laureano S, Bayman P (2002) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45

    Article  PubMed  Google Scholar 

  16. Strobel G, Hess WM, Li JY, Ford EJ, Sears J, Sidhu RS, Summercell B (1997) Pestalopitiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust J Bot 45:1073–1082

    Article  CAS  Google Scholar 

  17. Cankar K, Kraigher H, Ravnikar M, Rupnik M (2005) Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiol Lett 244:341–345

    Article  PubMed  CAS  Google Scholar 

  18. Tillett D, Neilan BA (2000) Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251–258

    Article  CAS  Google Scholar 

  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  20. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601

    Article  PubMed  CAS  Google Scholar 

  21. Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:690–704

    Article  Google Scholar 

  22. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucl Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  23. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  24. Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucl Acids Res 33:5799–5808

    Article  PubMed  CAS  Google Scholar 

  25. Sekhon BK, Roubin RH, Tan A, Chan WK, Sze DM (2008) High-throughput screening platform for anticancer therapeutic drug cytotoxicity. Assay Drug Dev Technol 6:711–721

    Article  PubMed  CAS  Google Scholar 

  26. Huang YJ, Wang JF, Li GL, Zheng ZH, Su WJ (2001) Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei and Torreya grandis. FEMS Immunol Med Microbiol 31:163–167

    Article  PubMed  CAS  Google Scholar 

  27. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon GB (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675

    Article  PubMed  CAS  Google Scholar 

  28. Mayer KM, Ford J, Macpherson GR, Padgett D, Volkmann-Kohimeyer B, Kohimeyer J, Murphy C, Douglas SE, Wright JM, Wright JLC (2007) Exploring the diversity of marine-derived fungal polyketide synthases. Can J Microbiol 53:291–302

    Article  PubMed  CAS  Google Scholar 

  29. Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29

    Article  CAS  Google Scholar 

  30. Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  31. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Article  PubMed  Google Scholar 

  32. Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  33. Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    Article  PubMed  CAS  Google Scholar 

  34. Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  CAS  Google Scholar 

  35. Gore ME, Bucak C (2007) Geographical and seasonal influences on the distribution of fungal endophytes in Laurus nobilis. Forest Pathol 37:281–288

    Article  Google Scholar 

  36. Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  37. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  38. Ulrich K, Stauber T, Ewald D (2008) Paenibacillus—a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tiss Org 93:347–351

    Article  Google Scholar 

  39. Spatafora JW, Sung GH, Johnson D, Hesse C, O'Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lucking R, Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G, Arnold AE, Budel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz M, Sipman H, Schoch CL (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    Article  PubMed  CAS  Google Scholar 

  40. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052

    Article  PubMed  CAS  Google Scholar 

  41. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson IJ, D'haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M, Copeland A, Han C, Chen F, Cheng J-F, Lucas S, Kerfeld C, Lang E, Gronow S, Chain P, Bruce D, Rubin EM, Kyrpides NC, Klenk H-P, Eisen JA (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060

    Article  PubMed  CAS  Google Scholar 

  42. Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P (2009) Metabolites from the endophytic mitosporic Dothideomycete sp. LRUB20. Phytochemistry 70:121–127

    Article  PubMed  CAS  Google Scholar 

  43. Burgaud G, Calvez TL, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600

    Article  PubMed  Google Scholar 

  44. Solomon PS, Lowe RG, Tan KC, Waters OD, Oliver RP (2006) Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Mol Plant Pathol 7:147–156

    Article  PubMed  Google Scholar 

  45. Young CA, Bryant MK, Christensen MJ, Tapper BA, Bryan GT, Scott B (2005) Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Genet Genomics 274:13–29

    Article  PubMed  CAS  Google Scholar 

  46. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  47. Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  48. Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol 102:461–471

    Article  PubMed  CAS  Google Scholar 

  49. Zhou K, Zhang X, Zhang F, Li Z (2011) Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China Sea sponges. Microb Ecol 62:644–654

    Article  PubMed  Google Scholar 

  50. Burns BP, Seifert A, Goh F, Pomati F, Jungblut AD, Serhat A, Neilan BA (2005) Genetic potential for secondary metabolite production in stromatolite communities. FEMS Microbiol Lett 243:293–301

    Article  PubMed  CAS  Google Scholar 

  51. Zhang W, Zhang F, Li Z, Miao X, Meng Q, Zhang X (2009) Investigation of bacteria with polyketide synthase genes and antimicrobial activity isolated from South China Sea sponges. J Appl Microbiol 107:567–575

    Article  PubMed  CAS  Google Scholar 

  52. Zhang W, Li ZY, Miao XL, Zhang FL (2009) The screening of antimicrobial bacteria with diverse novel nonribosomal peptide synthetase (NRPS) genes from South China Sea sponges. Mar Biotechnol 11:346–355

    Article  PubMed  Google Scholar 

  53. Schmitt I, Kautz S, Lumbsch HT (2008) 6-MSAS-like polyketide synthase genes occur in lichenized ascomycetes. Mycol Res 112:289–296

    Article  PubMed  CAS  Google Scholar 

  54. Puel O, Tadrist S, Delaforge M, Oswald IP, Lebrihi A (2007) The inability of Byssochlamys fulva to produce patulin is related to absence of 6-methylsalicylic acid synthase and isoepoxydon dehydrogenase genes. Int J Food Microbiol 115:131–139

    Article  PubMed  CAS  Google Scholar 

  55. Van Lanen SG, Oh TJ, Liu W, Wendt-Pienkowski E, Shen B (2007) Characterization of the maduropeptin biosynthetic gene cluster from Actinomadura madurae ATCC 39144 supporting a unifying paradigm for enediyne biosynthesis. J Am Chem Soc 129:13082–13094

    Article  PubMed  Google Scholar 

  56. Choi S-K, Park S-Y, Kim R, Kim S-B, Lee C-H, Kim JF, Park S-H (2009) Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191:3350–3358

    Article  PubMed  CAS  Google Scholar 

  57. Li J, Jensen SE (2008) Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a d-amino acid. Chem Biol 15:118–127

    Article  PubMed  Google Scholar 

  58. Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    Article  PubMed  CAS  Google Scholar 

  59. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  PubMed  CAS  Google Scholar 

  60. Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 10:209–228

    PubMed  CAS  Google Scholar 

  61. Johnson R, Voisey C, Johnson L, Pratt J, Fleetwood D, Khan A, Bryan G (2007) Distribution of NRPS gene families within the Neotyphodium/Epichloe complex. Fungal Genet Biol 44:1180–1190

    Article  PubMed  CAS  Google Scholar 

  62. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  PubMed  CAS  Google Scholar 

  63. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  64. Pulici M, Sugawara F, Koshino H, Okada G, Esumi Y, Uzawa J, Yoshida S (1997) Metabolites of Pestalotiopsis spp., endophytic fungi of Taxus brevifolia. Phytochemistry 46:313–319

    Article  CAS  Google Scholar 

  65. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiol 142(Pt 2):435–440

    CAS  Google Scholar 

  66. Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R (1992) 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 30:615–623

    Article  PubMed  CAS  Google Scholar 

  67. Bultel-Poncé V, Berge JP, Debitus C, Nicolas JL, Guyot M (1999) Metabolites from the sponge-associated bacterium Pseudomonas species. Mar Biotechnol 1:384–390

    Article  PubMed  Google Scholar 

  68. Calabrese EJ (2005) Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol 35:463–582

    Article  PubMed  CAS  Google Scholar 

  69. Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Troco K. Mihali (University of New South Wales), Yanli Zhang and Yajuan Chen (Kunming Medical University) for advice and helpful discussions. We would also like to acknowledge Bin Qiu (Yunnan Institute of Materia Medica) for assistance with collection of some of the plant samples. B.A.N. is a recipient of an Australian Research Council Federation fellowship and grant (FF0883440). K.I.M., M.Y.D.S and B.D.R. were supported by the Australia–China Special Fund for S&T Cooperation (CH070067). In addition, K.I.M. thanks the Endeavour Australia Cheung Kong programme funded by the Australian Government. C.Q. was financially supported by the National Natural Science Foundation of China (No. 30811120009) and the International Cooperation Foundation of Yunnan Province of China (No. 30811120009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett A Neilan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 655 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, K.I., Qing, C., Sze, D.MY. et al. Culturable Endophytes of Medicinal Plants and the Genetic Basis for Their Bioactivity. Microb Ecol 64, 431–449 (2012). https://doi.org/10.1007/s00248-012-0044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0044-8

Keywords

Navigation