Skip to main content

Advertisement

Log in

Transcriptional Response of Rhodococcus aetherivorans I24 to Polychlorinated Biphenyl-Contaminated Sediments

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We used a microarray targeting 3,524 genes to assess the transcriptional response of the actinomycete Rhodococcus aetherivorans I24 in minimal medium supplemented with various substrates (e.g., PCBs) and in both PCB-contaminated and non-contaminated sediment slurries. Relative to the reference condition (minimal medium supplemented with glucose), 408 genes were upregulated in the various treatments. In medium and in sediment, PCBs elicited the upregulation of a common set of 100 genes, including gene-encoding chaperones (groEL), a superoxide dismutase (sodA), alkyl hydroperoxide reductase protein C (ahpC), and a catalase/peroxidase (katG). Analysis of the R. aetherivorans I24 genome sequence identified orthologs of many of the genes in the canonical biphenyl pathway, but very few of these genes were upregulated in response to PCBs or biphenyl. This study is one of the first to use microarrays to assess the transcriptional response of a soil bacterium to a pollutant under conditions that more closely resemble the natural environment. Our results indicate that the transcriptional response of R. aetherivorans I24 to PCBs, in both medium and sediment, is primarily directed towards reducing oxidative stress, rather than catabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

PCBs:

Polychlorinated biphenyls

GLU:

Glucose control

BP:

Biphenyl

C:

Contaminated sediment

NC:

Non-contaminated sediment

LB:

Luria–Bertani Broth

MM:

Minimal medium

PBS:

Phosphate-buffered saline

COG:

Cluster of orthologous groups of proteins

References

  1. Agulló L, Cámara B, Martínez P, Latorre V, Seeger M (2007) Response to (chloro)biphenyls of the polychlorobiphenyl-degrader Burkholderia xenovorans LB400 involves stress proteins also induced by heat shock and oxidative stress. FEMS Microbiol Lett 267:167–175

    Article  PubMed  Google Scholar 

  2. Asturias J, Eltis L, Prucha M, Timmis K (1994) Analysis of three 2, 3-dihydroxybiphenyl 1, 2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases. J Biol Chem 269:7807–7815

    CAS  PubMed  Google Scholar 

  3. Bell KS, Philp JC, Aw DWJ, Christofi N (1998) A review—the genus Rhodococcus. J Appl Microbiol 85:195–210

    Article  CAS  PubMed  Google Scholar 

  4. Bolstad B, Irizarry R, Astrand M, Speed T (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  5. Bopp L (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol Biotec 1:23–29

    Article  CAS  Google Scholar 

  6. Buterin T, Koch C, Naegeli H (2005) Potential application of gene expression fingerprinting for food safety screening. Anal Chim Acta 529:33–39

    Article  CAS  Google Scholar 

  7. Chartrain M, Jackey B, Taylor C, Sandford V, Gbewonyo K, Lister L, Dimichele L, Hirsch C, Heimbuch B, Maxwell C, Pascoe D, Buckland B, Greasham R (1998) Bioconversion of indene to cis (1S, 2R) indandiol and trans (1R, 2R) indandiol by Rhodococcus species. J Ferment Bioeng 86:550–558

    Article  CAS  Google Scholar 

  8. Chávez F, Lünsdorf H, Jerez C (2004) Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072

    Article  PubMed  Google Scholar 

  9. Denef V, Park J, Tsoi T, Rouillard J, Zhang H, Wibbenmeyer J, Verstraete W, Gulari E, Hashsham S, Tiedje J (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70:4961–4970

    Article  CAS  PubMed  Google Scholar 

  10. Denef V, Patrauchan M, Florizone C, Park J, Tsoi T, Verstraete W, Tiedje J, Eltis L (2005) Growth substrate–and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187:7996–8005

    Article  CAS  PubMed  Google Scholar 

  11. Duintjer J, Eisma M (2000) Milieu-aspecten onderhoudsbaggerspecie. Resultaten monstercampagne 2000. Gemeentelijk Havenbedrijf Rotterdam/ RWS Directie Zuid-Holland: 13

  12. Gonçalves E, Hara H, Miyazawa D, Davies J, Eltis L, Mohn W (2006) Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1. Appl Environ Microbiol 72:6183–6193

    Article  PubMed  Google Scholar 

  13. Hrywna Y, Tsoi T, Maltseva O, Jr Q, Tiedje J (1999) Construction and characterization of two recombinant bacteria that grow on ortho–and para-substituted chlorobiphenyls. Appl Environ Microbiol 65:2163–2169

    CAS  PubMed  Google Scholar 

  14. Inaoka T, Matsumura Y, Tsuchido T (1999) SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis. J Bacteriol 181:1939–1943

    CAS  PubMed  Google Scholar 

  15. Irizarry R, Hobbs B, Collin F, Beazer-Barclay Y, Antonellis K, Scherf U, Speed T (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  16. Jensen L, Julien P, Kuhn M, von Mering C, Muller J, Doerks T, Bork P (2008) eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 36:D250–D254

    Article  CAS  PubMed  Google Scholar 

  17. Layton AC, Muccini M, Ghosh MM, Sayler GS (1998) Construction of a bioluminescent reporter strain to detect polychlorinated biphenyls. Appl Environ Microbiol 64:5023–5026

    CAS  PubMed  Google Scholar 

  18. Liu XM, Germaine KJ, Ryan D, Dowling DN (2007) Development of a Gfp-based biosensor for detecting the bioavailability and biodegradation of polychlorinated biphenyls (PCBs). J Environ Eng Landsc 15:261–268

    Google Scholar 

  19. O'Brien XM, Parker JA, Lessard PA, Sinskey AJ (2002) Engineering an indene bioconversion process for the production of cis-aminoindanol: a model system for the production of chiral synthons. Appl Microbiol Biot 59:389–399

    Article  Google Scholar 

  20. Ohtsubo Y, Kudo T, Tsuda M, Nagata Y (2004) Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biot 65:250–258

    Article  CAS  Google Scholar 

  21. Parnell J, Park J, Denef V, Tsoi T, Hashsham S, Quensen JR, Tiedje J (2006) Coping with polychlorinated biphenyl (PCB) toxicity: Physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress. Appl Environ Microbiol 72:6607–6614

    Article  CAS  PubMed  Google Scholar 

  22. Pieper D, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biot 15:121–138

    CAS  Google Scholar 

  23. Priefert H, O'Brien X, Lessard P, Dexter A, Choi E, Tomic S, Nagpal G, Cho J, Agosto M, Yang L, Treadway S, Tamashiro L, Wallace M, Sinskey A (2004) Indene bioconversion by a toluene inducible dioxygenase of Rhodococcus sp. I24. Appl Microbiol Biotec 65:168–176

    Article  CAS  Google Scholar 

  24. Puglisi E, Murk A, van den Berg H, Grotenhuis T (2007) Extraction and bioanalysis of the ecotoxicologically relevant fraction of contaminants in sediments. Environ Toxicol Chem 26:2122–2128

    Article  CAS  PubMed  Google Scholar 

  25. Ritz D, Patel H, Doan B, Zheng M, Aslund F, Storz G, Beckwith J (2000) Thioredoxin 2 is involved in the oxidative stress response in Escherichia coli. J Biol Chem 275:2505–2512

    Article  CAS  PubMed  Google Scholar 

  26. Rodrigues J, Kachel C, Aiello M, Quensen J, Maltseva O, Tsoi T, Tiedje J (2006) Degradation of aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb). Appl Environ Microbiol 72:2476–2482

    Article  CAS  PubMed  Google Scholar 

  27. Rumpel C, Dignac MF (2006) Chromatographic analysis of monosaccharides in a forest soil profile: Analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction-acetylation. Soil Biol Biochem 38:1478–1481

    Article  CAS  Google Scholar 

  28. Sakai M, Miyauchi K, Kato N, Masai E, Fukuda M (2003) 2-Hydroxypenta-2, 4-dienoate metabolic pathway genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol 69:427–433

    Article  CAS  PubMed  Google Scholar 

  29. Seaver L, Imlay J (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–7181

    Article  CAS  PubMed  Google Scholar 

  30. Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M, Yano K (1995) A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:3353–3358

    CAS  PubMed  Google Scholar 

  31. Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E, Krylov D, Mazumder R, Mekhedov S, Nikolskaya A, Rao B, Smirnov S, Sverdlov A, Vasudevan S, Wolf Y, Yin J, Natale D (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  PubMed  Google Scholar 

  32. Xing Y, Lu Y, Dawson R, Shi Y, Zhang H, Wang T, Liu W, Ren H (2005) A spatial temporal assessment of pollution from PCBs in China. Chemosphere 60:731–739

    Article  CAS  PubMed  Google Scholar 

  33. Yang XQ, Sun Y, Qian SJ (2004) Biodegradation of seven polychlorinated biphenyls by a newly isolated aerobic bacterium (Rhodococcus sp R04). J Ind Microbiol Biotechnol 31:415–420

    Article  CAS  PubMed  Google Scholar 

  34. Zamocky M, Furtmüller P, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10:1527–1548

    Article  CAS  PubMed  Google Scholar 

  35. Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93:259–266

    Article  CAS  PubMed  Google Scholar 

  36. Zhou JZ, Thompson DK (2002) Challenges in applying microarrays to environmental studies. Curr Opin Biotechnol 13:204–207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by IRG Marie Curie Grant “COMEHERE,” contract No. 21634, and by the Cambridge–MIT Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Boccazzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLS 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puglisi, E., Cahill, M.J., Lessard, P.A. et al. Transcriptional Response of Rhodococcus aetherivorans I24 to Polychlorinated Biphenyl-Contaminated Sediments. Microb Ecol 60, 505–515 (2010). https://doi.org/10.1007/s00248-010-9650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9650-5

Keywords

Navigation