Skip to main content
Log in

In Situ Dynamics and Spatial Heterogeneity of Soil Bacterial Communities Under Different Crop Residue Management

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-automated ribosomal intergenic spacer analysis of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed the difference of composition of the bacterial community according to the location. Bacteria belonging to the γ-subgroup of proteobacteria were stimulated when residues were incorporated whereas the α-subgroup was stimulated when residues were left at the soil surface. Moreover, Actinobacteria were more represented when residues were left at the soil surface. According to the ecological attributes of the populations identified, our results suggested that climatic fluctuations at the soil surface select populations harboring enhanced catabolic and/or survival capacities whereas residues characteristics likely constitute the main determinant of the composition of the bacterial community colonizing incorporated residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  2. Alvarez R, Díaz RA, Barbero N, Santanatoglia OJ, Blotta L (1995) Soil organic carbon, microbial biomass and CO2-C production from three tillage systems. Soil Tillage Res 33:17–28

    Article  Google Scholar 

  3. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  4. Aneja MK, Sharma S, Munch JC, Schloter M (2004) RNA fingerprinting—a new method to screen for differences in plant litter degrading microbial communities. J Microbiol Meth 59:223–231

    Article  CAS  Google Scholar 

  5. Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230

    Article  Google Scholar 

  6. Begon M, Harper JL, Townsend CR (1986) The nature of the community. In: Ecology: individuals, populations and community. Blackwell, Oxford, UK, pp 591–628

  7. Bernard L, Mougel C, Maron P-A, Nowak V, Lévêque J, Henault C, Haichar F, Berge O, Marol C, Balesdent J, Gibiat F, Lemenceau P, Ranjard L (2007) Dynamics and identification of soil microbial populations actively assimilating carbon from 13C labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Environ Microbiol 9:752–764

    Article  CAS  PubMed  Google Scholar 

  8. Campbell CA, Zentner RP, Selles F, Biederbeck VO (2000) Quantifying short-term effects of crop rotations on soil organic carbon in Southwestern Saskatchewan. Can J Soil Sci 80:193–202

    Google Scholar 

  9. Cookson WR, Murphy DV, Roper MM (2008) Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient. Soil Biol Biochem 40:763–777

    Article  CAS  Google Scholar 

  10. Coppens F, Garnier P, De Gryze S, Merckx R, Recous S (2006) Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. Eur J Soil Sci 57:894–905

    Article  CAS  Google Scholar 

  11. Corbeels M, O’Connell AM, Grove TS, Mendham DS (2003) Nitrogen release from eucalypt leaves and legume residues as influenced by their biochemical quality and degree of contact with soil. Plant Soil 250:15–28

    Article  CAS  Google Scholar 

  12. Curtin D, Francis GS, McCallum FM (2008) Decomposition rate of cereal straw as affected by soil placement. Aust J Soil Res 46:152–160

    Article  Google Scholar 

  13. Curtin D, Selles F, Wang H, Campbell CA, Biederbeck VO (1998) Carbon dioxide emissions and transformation of soil carbon and nitrogen during wheat straw decomposition. Soil Sci Soc Am J 62:1035–1041

    Article  CAS  Google Scholar 

  14. De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  15. De Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408

    Article  Google Scholar 

  16. Douglas CL, Allmaras RR, Rasmussen PE, Ramig RE, Roager NC (1980) Wheat straw composition and placement effects on decomposition in dryland agriculture of the Pacific Northwest. Soil Sci Soc Am J 44:833–837

    Article  CAS  Google Scholar 

  17. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  18. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  19. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  20. Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolate from deep subsurface. Appl Environ Microbiol 61:1917–1922

    CAS  PubMed  Google Scholar 

  21. Fuentes JP, Flury M, Huggins DR, Bezdicek DF (2003) Soil water and nitrogen dynamics in dryland cropping systems of Washington state, USA. Soil Tillage Res 71:33–47

    Article  Google Scholar 

  22. Gaillard V, Chenu C, Recous S, Richard G (1999) Carbon, nitrogen and microbial gradients induced by plant residues decomposition in soil. Eur J Soil Sci 50:567–578

    Article  Google Scholar 

  23. Gaillard V, Chenu C, Recous S (2003) Carbon mineralization in soil adjacent to plant residues of contrasting biochemical quality. Soil Biol Biochem 35:93–99

    Article  CAS  Google Scholar 

  24. Giller KE, Witter E, McGrath SE (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  25. Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in cultivated soil. Org Geochem 33:357–366

    Article  CAS  Google Scholar 

  26. Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266

    Article  CAS  Google Scholar 

  27. Henriksen TM, Breland TA (1999) Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil. Soil Biol Biochem 31:1135–1149

    Article  CAS  Google Scholar 

  28. Hsueh PR, Teng LJ, Yang PC, Chen YC, Pan HJ, Ho SW, Luh KT (1998) Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis 26:676–681

    Article  CAS  PubMed  Google Scholar 

  29. Hu S, van Bruggen AHC (1997) Microbial dynamics associated with multiphasic decomposition of 14C-labeled cellulose in soil. Microb Ecol 33:134–143

    Article  CAS  PubMed  Google Scholar 

  30. Kamphake LJ, Hannah SA, Cohen JM (1967) Automated analysis for nitrate by hydrazine reduction. Water Res 1:205–216

    Article  CAS  Google Scholar 

  31. Kim H, Nishiyama M, Kunito T, Senoo K, Kawahara K, Murakami K, Oyaizu H (1998) High population of Sphingomonas species on plant surface. J Appl Microbiol 85:731–736

    Article  Google Scholar 

  32. Kimura M (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  33. Krom MD (1980) Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichlorocyanurate. The analyst 105:305–316

    Article  CAS  Google Scholar 

  34. Kwabiah AB, Palm CA, Stoskopf NC, Voroney RP (2003) Response of soil microbial biomass dynamics to quality of plant materials with emphasis on P availability. Soil Biol Biochem 35:207–216

    Article  CAS  Google Scholar 

  35. Lal R, Kimble JM (1997) Conservation tillage for carbon sequestration. Nutr Cycl Agroecosyst 49:243–253

    Article  CAS  Google Scholar 

  36. Linères M, Djakovitch JL (1993) Matières Organiques et Agricultures. In: Decroux J, Ignazi JC (eds) Caractérisation de la stabilité biologique des apports organiques par l’analyse biochimique. COMIFER-GEMAS, Blois, pp 159–168

    Google Scholar 

  37. Lundquist E, Jackson LE, Scow K, Hsu C (1999) Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils. Soil Biol Biochem 31:221–236

    Article  CAS  Google Scholar 

  38. Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:71–82

    Article  CAS  Google Scholar 

  39. Nicolardot B, Fauvet G, Cheneby D (1994) Carbon and nitrogen cycling through soil microbial biomass at various temperatures. Soil Biol Biochem 26:253–261

    Article  CAS  Google Scholar 

  40. Nicolardot B, Bouziri L, Bastian F, Ranjard L (2007) A microcosm experiment to evaluate the influence of location and quality of plant residues on residue decomposition and genetic structure of soil microbial communities. Soil Biol Biochem 39:1631–1644

    Article  CAS  Google Scholar 

  41. Oorts K, Laurent F, Mary B, Thiébeau P, Labreuche J, Nicolardot B (2007) Experimental and simulated soil mineral N dynamics for long-term tillage systems in northern France. Soil Tillage Res 94:441–456

    Article  Google Scholar 

  42. Oorts K, Bossuyt H, Labreuche J, Merckx R, Nicolardot B (2007) Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France. Eur J Soil Sci 58:248–259

    Article  CAS  Google Scholar 

  43. Pankhurst CE, Kirkby CA, Hawke BG, Harch BD (2002) Impact of a change in tillage and crop residue management practice on soil chemical and microbiological properties in a cereal-producing red duplex soil in NSW, Australia. Biol Fertil Soils 35:189–196

    Article  CAS  Google Scholar 

  44. Parr JF, Papendick RI (1978) Factors affecting the decomposition of crop residues by microorganisms. In: Oschwld WR (ed) Crop residues management systems. publ. 31. ASA Spec., ASA, CSSA, SSSA, Madison, pp 101–129

    Google Scholar 

  45. Poll C, Ingwersen J, Stemmer M, Gerzabek MH, Kandeler E (2006) Mechanisms of solute transport affect small-scale abundance and function of soil microorganisms in the detritusphere. Eur J Soil Sci 57:583–595

    Article  Google Scholar 

  46. Rangel-Castro JI, Kilham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM (2005) Stable isotope probing analysis of the influence of liming on root exudates utilization by soil microorganisms. Environ Microbiol 7:828–838

    Article  CAS  PubMed  Google Scholar 

  47. Ranjard L, Poly F, Lata JC, Mougel C, Thioulouse J, Nazaret S (2001) Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Appl Environ Microbiol 67:4479–4487

    Article  CAS  PubMed  Google Scholar 

  48. Ranjard L, Lejon DPH, Mougel C, Schehrer L, Merdinoglu D, Chaussod R (2003) Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ Microbiol 5:1111–1120

    Article  CAS  PubMed  Google Scholar 

  49. Rickard AH, Leach SA, Hall LS, Buswell CM, High NJ, Handley PS (2002) Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl Environ Microbiol 68:3644–3650

    Article  CAS  PubMed  Google Scholar 

  50. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  51. Schlesinger WH (2000) Carbon sequestration in soils: some cautions amidst optimism. Agric Ecosyst Environ 82:121–127

    Article  CAS  Google Scholar 

  52. Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K, Yokota A (1995) Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45:334–341

    Article  CAS  PubMed  Google Scholar 

  53. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  54. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal IW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  55. Trinsoutrot I, Recous S, Mary B, Nicolardot B (2000) C and N fluxes of decomposing 13C and 15N Brassica napus L.: effects of residue composition and N content. Soil Biol Biochem 32:1717–1730

    Article  CAS  Google Scholar 

  56. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Offic Anal Chem 46:825–835

    Google Scholar 

  57. Wang H, Curtin D, Jame YW, McConkey BG, Zhou HF (2002) Simulation of soil carbon dioxide flux during plant residue decomposition. Soil Sci Soc Am J 66:1304–1310

    Article  CAS  Google Scholar 

  58. Wittmann C, Zeng A-P, Deckwer W-D (1998) Physiological characterization and cultivation strategies of the pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1. J Ind Microbiol Biotechnol 21:315–321

    Article  CAS  Google Scholar 

  59. Zelenev VV, van Bruggen AHC, Semenov AM (2005) Short-term wavelike dynamics of bacterial populations in response to nutrient input from fresh plant residues. Microb Ecol 49:83–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME) and the Burgundy region. We would like to thank G. Alavoine, F. Millon, S. Millon, C. Herre, and M.J. Herre for their technical assistance and M. Leleu, responsible for the Estrées-Mons INRA experimental station. Thanks also to Mary Bouley for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alain Maron.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

(DOC 387 kb)

Fig. 1

(DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascault, N., Nicolardot, B., Bastian, F. et al. In Situ Dynamics and Spatial Heterogeneity of Soil Bacterial Communities Under Different Crop Residue Management. Microb Ecol 60, 291–303 (2010). https://doi.org/10.1007/s00248-010-9648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9648-z

Keywords

Navigation