Skip to main content
Log in

Relationship of Atmospheric Pollution Characterized by Gas (NO2) and Particles (PM10) to Microbial Communities Living in Bryophytes at Three Differently Polluted Sites (Rural, Urban, and Industrial)

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Atmospheric pollution has become a major problem for modern societies owing to its fatal effects on both human health and ecosystems. We studied the relationships of nitrogen dioxide atmospheric pollution and metal trace elements contained in atmospheric particles which were accumulated in bryophytes to microbial communities of bryophytes at three differently polluted sites in France (rural, urban, and industrial) over an 8-month period. The analysis of bryophytes showed an accumulation of Cr and Fe at the rural site; Cr, Fe, Zn, Cu, Al, and Pb at the urban site; and Fe, Cr, Pb, Al, Sr, Cu, and Zn at the industrial site. During this study, the structure of the microbial communities which is characterized by biomasses of microbial groups evolved differently according to the site. Microalgae, bacteria, rotifers, and testate amoebae biomasses were significantly higher in the rural site. Cyanobacteria biomass was significantly higher at the industrial site. Fungal and ciliate biomasses were significantly higher at the urban and industrial sites for the winter period and higher at the rural site for the spring period. The redundancy analysis showed that the physico-chemical variables ([NO2], relative humidity, temperature, and site) and the trace elements which were accumulated in bryophytes ([Cu], [Sr], [Pb]) explained 69.3% of the variance in the microbial community data. Moreover, our results suggest that microbial communities are potential biomonitors of atmospheric pollution. Further research is needed to understand the causal relationship underlined by the observed patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aboal JR, Couto JA, Fernández JA, Carballeira A (2008) Physiological responses to atmospheric fluorine pollution in transplants of Pseudoscleropodium purum. Environ Pollut 153(3):602–609

    Article  CAS  PubMed  Google Scholar 

  2. Abu-Allaban M, Gillies JA, Gertler AW, Clayton R, Proffitt D (2003) Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles. Atmos Environ 37:5283–5293

    Article  CAS  Google Scholar 

  3. Asada T, Warner BG (2003) Growth of mosses in relation to climate factors in a hypermaritime coastal peatland in British Columbia. Bryologist 126(4):516–527

    Article  Google Scholar 

  4. Austin J, Brimblecombe P, Sturges W (2002) In: Krupa SV (ed) Air pollution science for the 21st century. Elsevier, 675p

  5. Baldi F, Bianco MA, Pepi M (1995) Mercury, arsenic and boron resistant bacteria isolated from phyllosphere as positive bioindicators of airborne pollution near geothermal plants. Sci Total Environ 164(2):99–107

    Article  CAS  Google Scholar 

  6. Bergamaschi L, Rizzio E, Giaveri G, Loppi S, Gallorni M (2007) Comparison between the accumulation capacities of four lichen species transplanted to an urban site. Environ Pollut 148:468–476

    Article  CAS  PubMed  Google Scholar 

  7. Bernard N, Astre C, Vuillot B, Saintot M, Gerber M (1997) Measurement of background urban nitrogen dioxide pollution levels with passive samplers in Montpellier, France. J Expo Anal Environ Epidemiol 7(2):165–178

    CAS  PubMed  Google Scholar 

  8. Bernard N, Saintot M, Astre C, Gerber M (1998) Personal exposure to NO2 pollution and effect on plasma antioxidants. Arch Environ Health 53:122–128

    CAS  PubMed  Google Scholar 

  9. Bragazza L, Siffi C, Iacumin P, Gerdol R (2007) Mass loss and nutrient release during litter decay in peatland: the role of microbial adaptability to litter chemistry. Soil Biol Biochem 39:257–267

    Article  CAS  Google Scholar 

  10. Bratback G (1985) Bacterial biovolume and biomass estimations. Appl Environ Microbiol 46:491–498

    Google Scholar 

  11. Brown DH, Bates JW (1972) Uptake of lead by two populations of Grimmia doniana. J Bryol 7:129–147

    Google Scholar 

  12. Catalayud V, Sanz MJ, Calvo E, Cerveró J, Ansel W, Klumpp A (2007) Ozone biomonitoring with Bel-W3 tobacco plants in the city of Valencia (Spain). Water Air Soil Pollut 183:283–291

    Article  CAS  Google Scholar 

  13. Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492

    Article  CAS  PubMed  Google Scholar 

  14. Coordination technique de la surveillance de la qualité de l'air (ADEME, LCSQA, Fédération Atmo) (2002) Echantillonneurs passifs pour le dioxyde d'azote. ADEME, édition Paris, 143p

  15. Couto JA, Fernández JA, Aboal JR, Carballeira A (2004) Active biomonitoring of element uptake with terrestrial mosses: a comparison of bulk and dry deposition. Sci Total Environ 324:211–222

    Article  CAS  PubMed  Google Scholar 

  16. Culicov OA, Mocanu R, Frontasyeva MV, Yurukova L, Steinnes E (2005) Active moss biomonitoring applied to an industrial site in Romania: relative accumulation of 36 elements in moss-bags. Environ Monit Assess 108:229–240

    Article  CAS  PubMed  Google Scholar 

  17. Ebner P, Le Moullec Y, Weill A (2005) Pollution par les particules atmosphériques : état des connaissances et perspectives de recherches. Ed. Primequal-Predit, 279p

  18. El-Sheekh MM, El-Shouny WA, Osman MEH, El-Gammal EWE (2005) Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ Toxicol Pharmacol 19:357–365

    Article  CAS  Google Scholar 

  19. Fernández AJ, Ternero M, Barragán FJ, Jiménez JC (2000) An approach to characterization of sources of urban airborne particles through heavy metal speciation. Chemosphere, Glob Change Sci 2:123–136

    Article  Google Scholar 

  20. Fernández JA, Aboal JR, Carballeira A (2004) Identification of pollution sources by means of moss bags. Ecotoxicol Environ Saf 59:76–83

    Article  PubMed  CAS  Google Scholar 

  21. Frey B, Stemmer M, Widmer F, Luster J, Sperisen C (2006) Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biol Biochem 38:1745–1756

    Article  CAS  Google Scholar 

  22. Furness SB, Grime JP (1982) Growth-rate and temperature responses in Bryophytes: 2. A comparative study of species of contrasted ecology. J Ecol 70:525–536

    Article  Google Scholar 

  23. Galsomies L, Letrouit MA, Deschamps C, Savanne D, Avnaim M (1999) Atmospheric metal deposition in France: initial results on moss calibration from the 1996 biomonitoring. Sci Total Environ 232:39–47

    Article  Google Scholar 

  24. Gaudry A, Moskura M, Mariet C, Ayrault S, Denayer F, Bernard N (2008) Inorganic pollution in PM10 particles collected over three French sites under various influences: rural conditions, traffic and industry. Water Air Soil Pollut 193:91–106

    Article  CAS  Google Scholar 

  25. Gilbert D, Amblard G, Bourdier G, Francez AJ (1998) Short-term effect of nitrogen enrichment on the microbial communities of a peatland. Hydrobiologia 374:111–119

    Article  Google Scholar 

  26. Gilbert D, Amblard G, Bourdier G, Francez AJ (1998) The microbial loop at the surface of a peatlands: structure, function, and impact of nutrient input. Microb Ecol 35(1):83–93

    Article  CAS  PubMed  Google Scholar 

  27. Grantz DA, Garner JHB, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29:213–239

    Article  CAS  PubMed  Google Scholar 

  28. Hayward PM, Clymo RS (1983) The growth of Sphagnum: experiments on, and simulation of, some effects of light flux and water-table depth. J Ecol 71:845–863

    Article  Google Scholar 

  29. Kakareka S, Gromov S, Pacyna J, Kukharchyk T (2004) Estimation of heavy metal emission fluxes on the territory of the NIS. Atmos Environ 38:7101–7109

    Article  CAS  Google Scholar 

  30. Masclet P (2005) Pollution atmosphérique, causes, conséquences, solutions, perspectives. Ellipses, 213p

  31. Mitchell EAD, Gilbert D, Buttler A, Grosvernier P, Amblard C, Gobat JM (2003) Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microb Ecol 46:187–1999

    CAS  PubMed  Google Scholar 

  32. Munawar M, Weisse T (1989) Is the “microbial loop” an early warning indicator of anthropogenic stress? In: Munawar M, Dixon G, Mayfield CI, Reynoldson T, Sadar MH (eds) Environmental bioassay techniques and their applications. Hydrobiologia 188/189:163–174

  33. Nguyen-Viet H, Gilbert D, Bernard N, Mitchell EAD, Badot PM (2004) Relationship between atmospheric pollution characterised by NO2 concentrations and testate amoebae abundance and diversity. Acta Protozool 43:233–329

    CAS  Google Scholar 

  34. Nguyen-Viet H, Bernard N, Mitchell EAD, Cortet J, Badot PM, Gilbert D (2007) Relationship between testate amoeba (Protist) communities and atmospheric heavy metals accumulated in Barbula indica (Bryophyta) in Vietnam. Microb Ecol 53:53–65

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen-Viet H, Gilbert D, Mitchell EAD, Badot PM, Bernard N (2007) Effects of experimental lead pollution on the microbial communities associates with Sphagnum fallax (Bryophyta). Microb Ecol 54(2):232–241

    Article  CAS  PubMed  Google Scholar 

  36. Nicolau A, Martins MJ, Mota M, Lima N (2005) Effect of copper in protistan community of activated sludge. Chemosphere 58:605–614

    Article  CAS  PubMed  Google Scholar 

  37. Onianwa PC (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Monit Assess 71(1):13–50

    Article  CAS  PubMed  Google Scholar 

  38. Pagotto C, Remy N, Legret N, Le Cloiret P (2001) Heavy metal pollution of road dust and roadside soil near a major rural highway. Environ Technol 22:307–309

    Article  CAS  PubMed  Google Scholar 

  39. Palmes ED, Gunnison AF, DiMattio J, Tomczik C (1976) Personal sampler for nitrogen dioxide. Am Ind Hyg Assoc J 37(10):570–577

    CAS  PubMed  Google Scholar 

  40. Piccot D, Deschamps C, Delmas R, Revel G (1997) K0-LABSUE, a quasi non-dependent data format package for K0-quantification. J Radioanal Nucl Chem 215:263

    Article  CAS  Google Scholar 

  41. Porter KG, Feig YS (1980) The use DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  42. Rühling A, Tyler G (1970) Sorption and retention of heavy metals in the woodland moss Hylocomium splendens (Hedw.). Br Et Sch Oikos 21:92–97

    Article  Google Scholar 

  43. Saintot M, Bernard N, Astre C, Gerber M (1999) Ozone exposure and blood antioxidants: a study in a periurban area in Southern France. Arch Environ Health 54:34–39

    Article  CAS  PubMed  Google Scholar 

  44. Sharma S (2009) Study on impact of heavy metal accumulation in Brachythecium populeum (Hedw.) B.S.G. Ecol Indicat 9:807–811

    Article  Google Scholar 

  45. Ter Braak C, Smilauer P (1998) Canoco reference manual and user's guide to canoco for windows, software for canoco community ordination (version 4). Centre for Biometry, Wageningen, pp 31–145

    Google Scholar 

  46. Uthermöhl H (1958) Zur vervollkommnung der quantative phytoplankton-methodik. Mitt Inst Verhein Limnol 9:1–38

    Google Scholar 

  47. Venables WN, Ripley BD (2003) Modern applied statistics with S, 4th edn. Springer, New York 495p

    Google Scholar 

  48. Viti C, Mini A, Ranalli G, Lustrato G, Giovannetti L (2006) Response of microbial communities to different doses of chromate in soil microcosms. Appl Soil Ecol 34:125–139

    Article  Google Scholar 

  49. Weisse T, Muller H, Pinto-Coelho RM, Schweizer A, Springmann D, Baldringer G (1990) Response of microbial loop to the phytoplankton spring bloom in a larger prealpine lake. Limnol Oceanogr 35:781–794

    Google Scholar 

  50. Wróbel A, Rotika E, Maenhaut W (2000) Transport of traffic-related aerosols in urban areas. Sci Total Environ 257(2–3):199–211

    Article  PubMed  Google Scholar 

  51. Wynn-Williams DD (1981) Simulation of seasonal changes in microbial activity of maritime Antarctic peat. Soil Biol Biochem 14:1–12

    Article  Google Scholar 

  52. Li X, Poon CS, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong-Kong. Appl Geochem 16:1361–1368

    Article  CAS  Google Scholar 

  53. Zechmeister HG, Hohenwallner D, Riss A, Hanus-Illnar A (2005) Estimation of element deposition derived from road traffic sources by using mosses. Environ Pollut 138(2):238–249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by the PRIMEQUAL program. I thank C. Morilhat for their advice with regards to statistical analyses and C. Fritsch for her assistance at the time of bacterial colorings. I also thank Meteo France for their collaboration in weather data acquisition and all the people who helped me both for the chemical analyses and the installation and the operation of the weather station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, C., Gilbert, D., Gaudry, A. et al. Relationship of Atmospheric Pollution Characterized by Gas (NO2) and Particles (PM10) to Microbial Communities Living in Bryophytes at Three Differently Polluted Sites (Rural, Urban, and Industrial). Microb Ecol 59, 324–334 (2010). https://doi.org/10.1007/s00248-009-9580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9580-2

Keywords

Navigation