Skip to main content
Log in

Population Dynamics and Identification of Endophytic Bacteria Antagonistic Toward Plant-Pathogenic Fungi in Cotton Root

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The antagonistic potentials of endophytic bacteria isolated from the roots of six cotton cultivars at different developmental stages were determined in vitro toward three pathogens: Verticillium dahliae Kleb V107 and V396 and Fusarium oxysporum f.sp. vasinfectum (F108). The populations of antagonistic endophytic bacteria (AEB) toward V107, V396, and F108 at the flowering and maturation stages were significantly higher than those at the seedling stage were. More AEB were found to be antagonistic toward pathogens V396 and F108 than V107. Results from the multivariate analysis of variance showed that the populations of AEB were significantly different for the main factors of cultivars, stages, and their interactions. Based on 16S rDNA sequence analysis, the 39 AEB isolates that antagonized V107, V396, and F108 (BAEB) consisted of seven genera, in which the genus of Enterobacter (17 out of 39) and Pantoea (14 out of 39) were predominant among the BAEB isolates. Characterized by BOX-PCR fingerprints, these 39 BAEB isolates represented 35 different cluster types. To explore the antagonistic mechanisms, the agar diffusion method was used to detect cell-wall-degrading enzyme activity and siderophore secretion. Nearly half of these BAEB isolates showed protease and chitinase activity, while all 39 BAEB isolates excreted siderophores. However, pectinase, cellulase, and xylanase activity were hardly detected. A germination experiment revealed that nine of the 39 BAEB isolates significantly improved the vigor index of the cotton seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Abdul Baki AA, Anderson JD (1973) Vigour determination in soybean seed by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  2. Allen SJ (2001) Genetic and induced resistance strategies for controlling Fusarium wilt of cotton. Proceedings of the second Australasian Soil borne diseases symposium. Victoria, Australia, pp 59–60

    Google Scholar 

  3. Anith KN, Radhakrishnan NV, Manomohandas TP (2003) Screening of antagonistic bacteria for biological control of nursery wilt of black pepper (Piper nigrum). Microbiol Res 158:91–97

    Article  CAS  PubMed  Google Scholar 

  4. Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth-dependent. Microb Ecol 50:350–359

    Article  PubMed  Google Scholar 

  5. Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 155–194

    Chapter  Google Scholar 

  6. Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Soil biology, vol 9. microbial root endophytes. Springer, Berlin, pp 53–67

    Chapter  Google Scholar 

  7. Brooks DS, Gonzalez CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biocontrol agents for oak wilt. Biol Control 4:373–381

    Article  Google Scholar 

  8. Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microb Ecol 54:341–351

    Article  CAS  PubMed  Google Scholar 

  9. Daayf F, Nicole M, Boher B, Pando A, Geiger JP (1997) Early vascular defense reaction of cotton roots infected with a defoliating mutant strain of Verticillium dahliae. Eur J Plant Pathol 103:125–136

    Article  CAS  Google Scholar 

  10. Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C (2004) Endophytic nitrogen fixation in dune grasses (Ammophilaarenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol 49:469–479

    Article  CAS  PubMed  Google Scholar 

  11. Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286

    Article  CAS  Google Scholar 

  12. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L ) isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  13. Granér G, Persson P, Meijer J, Alström S (2003) A study on microbial diversity in different cultivars of Brassica napusin relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiol Lett 224:269–276

    Article  PubMed  CAS  Google Scholar 

  14. Hallmann J, Hallmann QA, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  15. Hallmann J, Quadt HA, Rodrguez R, Kloepper JW (1998) Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem 30:925–937

    Article  CAS  Google Scholar 

  16. Hardoim PR, Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  17. Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129:117–125

    Article  CAS  PubMed  Google Scholar 

  18. Jian G, Ma C, Zheng C, Zou Y (2003) Advance in cotton breeding for resistance to Fusarium and Verticillium wilt in the last fifty years in china. Agricultural Sciences in China 2(3):280–288

    Google Scholar 

  19. Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K, Samiyappan R (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol Biochem 39:1087–1098

    Article  CAS  Google Scholar 

  20. Kloepper JW, Scher FM, Laliberte M, Tipping B (1986) Emergence-promoting rhizobacteria: description, implications for agriculture. In: Swinburne TR (ed) Iron, siderophores, and plant diseases. Plenum, New York, pp 155–164

    Google Scholar 

  21. Kobayashi DY, Columbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White Jr (Eds), Microbial endophytes. Marcel Dekker, New York, pp 199–233

  22. Krechel A, Faupel A, Hallmann J, Ulrich A, Berg G (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786

    Article  CAS  PubMed  Google Scholar 

  23. Li JG, Jiang ZQ, Xu LP, Sun FF, Guo JH (2008) Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. Biocontrol 53:931–944

    Article  CAS  Google Scholar 

  24. Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of aerobic heterotropic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol Ecol 21:231–242

    Article  CAS  Google Scholar 

  25. Madhaiyan M, Saravanan VS, Jovi DB, Lee H, Thenmozhi R, Hari K, Sa T (2004) Occurrence of Gluconacetobacter diazotrophicus in tropical and subtropical plants of Western Ghats, India. Microbiol Res 159:233–243

    Article  CAS  PubMed  Google Scholar 

  26. Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with fieldgrown cucumber (Cucumis sativus L). Microb Ecol 34:210–223

    Article  PubMed  Google Scholar 

  27. McInroy JA, Kloepper JW (1994) Studies on indigenous endophytic bacteria of sweet corn and cotton. In: O'Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. Biotechnology and the Release of GMOs . VCH, New York, pp 19–27

    Chapter  Google Scholar 

  28. McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  29. McInroy JA, Kloepper JW (1995) Population dynamics endophytic bacteria of in field-grown sweet corn and cotton. Can J Microbiol 141:895–901

    Article  Google Scholar 

  30. McInroy JA, Qi W, Mahaffee WM, Lu S, Mei R, Kloepper JW (1997) Comparative evaluation of endophytic bacteria from Chinese and U.S. cotton cultivars. In: Proceedings of the fourth international workshop on plant growth-promoting rhizobacteria. Sapporo, Japan, pp 228–231

  31. Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811

    Article  Google Scholar 

  32. Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 154:105–114

    Article  PubMed  Google Scholar 

  33. Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  PubMed  Google Scholar 

  34. Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park KD, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286

    Article  CAS  PubMed  Google Scholar 

  35. Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215

    Article  Google Scholar 

  36. Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  CAS  PubMed  Google Scholar 

  37. Nick G, Räsänen LA, de Lajudie P, Gillis M, Lindström K (1999) Genomic screening of rhizobia isolated from root nodules of tropical leguminous trees using DNA–DNA dot-blot hybridization and rep-PCR. Syst Appl Microbiol 22:287–299

    Google Scholar 

  38. Pamela D, Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton. Plant Soil 240:181–189

    Article  Google Scholar 

  39. Pan MJ, Rademan S, Kuner K, Hastings JW (1997) Ultrastructural studies on the colonisation of banana tissue and Fusarium oxysporum f.sp. cubense race 4 by the endophytic bacterium Burkholeria cepacia. J Phytopathol 145:79–486

    Article  Google Scholar 

  40. Park SR, Kim MK, Kim JO, Bae DW, Cho SJ, Cho YU, Yun HD (2000) Characterization of Erwinia chrysanthemi PY35 cel and pel gene existing in tandem and rapid identification of their gene products. Biochem Biophys Res Commun 268:420–425

    Article  CAS  PubMed  Google Scholar 

  41. Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communitiesin potato plants to infection with Erwinia carotovora subsp.atroseptica. Appl Environ Microbiol 68:2261–2268

    Article  CAS  PubMed  Google Scholar 

  42. Rohlf FJ (2002) NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.10.Exeter Software, New York

  43. Schnathorst WC (1981) Life cycle and epidemiology of Verticillium. In: Mace ME, Bell AA, Beckman CH (eds) Fungal wilt disease of plants. Academic, New York, pp 81–111

    Google Scholar 

  44. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  45. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  46. Sheng X, Chen X, He L (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12 J1 from Allium macrostemon Bunge. Int Biodeterior Biodegrad 62:88–95

    Article  CAS  Google Scholar 

  47. Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil borne plant pathogens. Plant Pathol 48:360–369

    Article  Google Scholar 

  48. Sturz AV, Matheson BG (1996) Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184:265–271

    Article  CAS  Google Scholar 

  49. Surette MA, Sturz AV, Rajasekaran R, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  50. Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93(1):88–90

    CAS  PubMed  Google Scholar 

  51. Suzuki MT, Rappé MS, Haimberger ZW, Winfield H, Adair N, Ströbel J, Giovannoni SJ (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63:983–989

    CAS  PubMed  Google Scholar 

  52. Tan HM, Cao LX, He ZF, Su GJ, Lin B, Zhou SN (2006) Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J Microbiol Biotechnol 22:1275–1280

    Article  CAS  Google Scholar 

  53. Trivedi P, Pandey A, Palni LMS (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163:329–336

    Article  PubMed  Google Scholar 

  54. Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76

    Article  CAS  PubMed  Google Scholar 

  55. Van Buren AM, Andre C, Ishmaru CA (1993) Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology 83:1406

    Google Scholar 

Download references

Acknowledgments

We thank Haiwei Lü, Qiaojie Wei, and Cuan Feng for their assistance isolating and identifying cotton endophytic bacteria and Changhua Shang for his guidance in the cluster analysis of the BOX fingerprints of BAEB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming-Wen Zhao or Can-Ming Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CH., Zhao, MW., Tang, CM. et al. Population Dynamics and Identification of Endophytic Bacteria Antagonistic Toward Plant-Pathogenic Fungi in Cotton Root. Microb Ecol 59, 344–356 (2010). https://doi.org/10.1007/s00248-009-9570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9570-4

Keywords

Navigation