Skip to main content
Log in

Diversity of Culturable Bacteria Isolated from Root Domains of Moso Bamboo (Phyllostachys edulis)

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The distribution of culturable bacteria in the rhizosphere, rhizoplane, and interior root tissues of moso bamboo plants was investigated in this study. Of the 182 isolates showing different colony characteristics on Luria–Bertani and King B plates, 56 operational taxonomic units of 22 genera were identified by 16S ribosomal RNA gene sequence analysis. The majority of root endophytic bacteria were Proteobacteria (67.5%), while the majority of rhizospheric and rhizoplane bacteria were Firmicutes (66.3% and 70.4%, respectively). The most common genus in both the rhizosphere and on the rhizoplane was Bacillus (42.4% and 44.4%, respectively), while Burkholderia was the most common genus inside the roots, comprising 35.0% of the isolates from this root domain. The endophytic bacterial community was less diverse than the rhizoplane and rhizospheric bacterial communities. Members of Lysinibacillus, Bacillus, and Burkholderia were found in all three root domains, whereas many isolates were found in only a single domain. Our results show that the population diversity of culturable bacteria is abundant in the root domains of moso bamboo plants and that obvious differences exist among the rhizospheric, rhizoplane, and endophytic bacterial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125

    Article  PubMed  CAS  Google Scholar 

  2. Asis CA Jr, Adachi K (2004) Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweet potato stem in Japan. Lett Appl Microbiol 38:19–23

    Article  PubMed  Google Scholar 

  3. Baldani JI, Caruso L, Baldani VLD, Goi S, Dobereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  4. Burch G, Sarathchandra U (2006) Activities and survival of endophytic bacteria in white clover (Trifolium repens L.). Can J Microbiol 52:848–856

    Article  PubMed  CAS  Google Scholar 

  5. Chen L, Zhang X, Lindstrom K (2008) Phylogeny and diversity of endophytic Bacillus isolated from medicinal plants. Acta Microbiol Sin 48:432–438

    CAS  Google Scholar 

  6. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  7. Coombs JT, Franco CM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  PubMed  CAS  Google Scholar 

  8. Dong Y, Iniguez AL, Ahmer BM, Triplett EW (2003) Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl Environ Microbiol 69:1783–1790

    Article  PubMed  CAS  Google Scholar 

  9. Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  PubMed  CAS  Google Scholar 

  10. Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2002) A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol 48:285–294

    Article  PubMed  CAS  Google Scholar 

  11. Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    Article  PubMed  CAS  Google Scholar 

  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  13. Fett WF (2006) Inhibition of Salmonella enterica by plant-associated pseudomonads in vitro and on sprouting alfalfa seed. J Food Prot 69:719–728

    PubMed  Google Scholar 

  14. Fiore A, Laevens S, Bevivino A, Dalmastri C, Tabacchioni S, Vandamme P, Chiarini L (2001) Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ Microbiol 3:137–143

    Article  PubMed  CAS  Google Scholar 

  15. Fu J (2001) Chinese moso bamboo: its importance. Bamboo 22:5–7

    Google Scholar 

  16. Germida JJ, Siciliano SD, Freitas JRd, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  17. Gui Y, Wang S, Quan L, Zhou C, Long S, Zheng H, Jin L, Zhang X, Ma N, Fan L (2007) Genome size and sequence composition of moso bamboo: a comparative study. Sci China C Life Sci 50:700–705

    Article  PubMed  CAS  Google Scholar 

  18. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  19. Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Wang Y, Song W (2005) Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol 28:66–76

    Article  PubMed  CAS  Google Scholar 

  20. Hu X, Fan W, Han B, Liu H, Zheng D, Li Q, Dong W, Yan J, Gao M, Berry C, Yuan Z (2008) Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related Bacillus species. J Bacteriol 190:2892–2902

    Article  PubMed  CAS  Google Scholar 

  21. Jung S, Park S, Kim D, Kim SB (2008) Denaturing gradient gel electrophoresis analysis of bacterial community profiles in the rhizosphere of cry1 AC-carrying Brassica rapa subsp. pekinensis. J Microbiol 46:12–15

    Article  PubMed  CAS  Google Scholar 

  22. Kloepper JW, Rodriguez-Ubana R, Zehnder GW, Murphy JF, Sikora A E, Fernández C (1999) Plant root–bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Article  Google Scholar 

  23. Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  24. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  25. Li L, Liu M, Yang S, Liu L, Miao K, Yang K, Han J (2008) Cultivable microbial diversity at the rhizosphere of Phyllostachys pubescens. Acta Microbiol Sin 48:772–779

    CAS  Google Scholar 

  26. Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol Ecol 21:231–242

    Article  CAS  Google Scholar 

  27. Lin M, Cheng M, Li F, Long S (2000) The enhanced effect of co-culture on nitrogen-fixing activity of B. sphaerium and B. megaterium. Acta Agriculturae Nucleatae Sinica 14:337–341

    Google Scholar 

  28. Maidak BL, Cole JR, Parker CT Jr, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173

    Article  PubMed  CAS  Google Scholar 

  29. Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  30. Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682

    Article  PubMed  CAS  Google Scholar 

  31. Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    Article  PubMed  CAS  Google Scholar 

  32. Park MS, Jung SR, Lee MS, Kim KO, Do JO, Lee KH, Kim SB, Bae KS (2005) Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J Microbiol 43:219–227

    PubMed  Google Scholar 

  33. Rangarajan S, Loganathan P, Saleena LM, Nair S (2001) Diversity of pseudomonads isolated from three different plant rhizospheres. J Appl Microbiol 91:742–749

    Article  PubMed  CAS  Google Scholar 

  34. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  35. Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol Ecology 29:263–272

    Article  CAS  Google Scholar 

  36. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  PubMed  CAS  Google Scholar 

  37. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  PubMed  CAS  Google Scholar 

  38. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16 S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  PubMed  CAS  Google Scholar 

  39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  41. Wilson D (1995) Endophyte—the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  42. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Xiaoping Gu and Dr. Jinjun Yue from The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, for assistance with moso bamboo plant samples collection. This work was supported by the project of the Forest Scientific and Technical Supporting Programs (2006BAD01A18) and Postdoctoral Seed Fund Program of Hebei University, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jigang Han or Lubin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Xia, D., Li, L. et al. Diversity of Culturable Bacteria Isolated from Root Domains of Moso Bamboo (Phyllostachys edulis). Microb Ecol 58, 363–373 (2009). https://doi.org/10.1007/s00248-009-9491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9491-2

Keywords

Navigation