Skip to main content
Log in

Methane-Oxidizing Bacteria in a Finnish Raised Mire Complex: Effects of Site Fertility and Drainage

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Methane-oxidizing bacteria (MOB) are the only biological sinks for methane (CH4). Drainage of peatlands is known to decrease overall CH4 emission, but the effect on MOB is unknown. The objective of this work was to characterize the MOB community and activity in two ecohydrologically different pristine peatland ecosystems, a fen and a bog, and their counterparts that were drained in 1961. Oligotrophic fens are groundwater-fed peatlands, but ombrotrophic bogs receive additional water and nutrients only from rainwater. The sites were sampled in August 2003 down to 10 cm below the water table (WT), and cores were divided into 10-cm subsamples. CH4 oxidation was measured by gas chromatography (GC) to characterize MOB activity. The MOB community structure was characterized by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) and sequencing methods using partial pmoA and mmoX genes. The highest CH4 oxidation rates were measured from the subsamples 20–30 and 30–40 cm above WT at the pristine oligotrophic fen (12.7 and 10.5 μmol CH4 dm−3 h−1, respectively), but the rates decreased to almost zero in the vicinity of WT. In the pristine ombrotrophic bog, the highest oxidation rate at 0–10 cm was lower than in the fen (8.10 μmol CH4 dm−3 h−1), but in contrast to the fen, oxidation rates of 4.5 μmol CH4 dm−3 h−1 were observed at WT and 10 cm below WT. Drainage reduced the CH4 oxidation rates to maximum values of 1.67 and 5.77 μmol CH4 dm−3 h−1 at 30–40 and 20–30 cm of the fen and bog site, respectively. From the total of 13 pmoA-derived DGGE bands found in the study, 11, 3, 6, and 2 were observed in the pristine fen and bog and their drained counterparts, respectively. According to the nonmetric multidimensional scaling of the DGGE banding pattern, the MOB community of the pristine fen differed from the other sites. The majority of partial pmoA sequences belonged to type I MOB, whereas the partial mmoX bands that were observed only in the bog sites formed a distinct group relating more to type II MOB. This study indicates that fen and bog ecosystems differ in MOB activity and community structure, and both these factors are affected by drainage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. JA Amaral C Archambault SR Richards R Knowles (1995) ArticleTitleDenitrification associated with groups I and II methanotrophs in a gradient enrichment system FEMS Microbiol Ecol 18 289–298 Occurrence Handle1:CAS:528:DyaK2MXhtVSgtr3O

    CAS  Google Scholar 

  2. JA Amaral T Ren R Knowles (1998) ArticleTitleAtmospheric CH4 consumption by forest soils and extracted bacteria at different pH values Appl Environ Microbiol 64 2397–2402 Occurrence Handle1:CAS:528:DyaK1cXkt1Ohtbo%3D Occurrence Handle9647806

    CAS  PubMed  Google Scholar 

  3. AJ Auman S Stolyar AM Costello M Lidstrom (2000) ArticleTitleMolecular characterization of methanotrophic isolates form freshwater lake sediment Appl Environ Microbiol 66 5259–5266 Occurrence Handle10.1128/AEM.66.12.5259-5266.2000 Occurrence Handle1:CAS:528:DC%2BD3MXjsVyhurY%3D Occurrence Handle11097900

    Article  CAS  PubMed  Google Scholar 

  4. T Blunier J Chappellaz J Schwander J Basrnola T Desperts B Stauffer D Raynaud (1993) ArticleTitleAtmospheric methane record from a Greenland ice core over the past 1000 years Geophys Res Lett 20 2219–2222 Occurrence Handle1:CAS:528:DyaK2cXktl2msr4%3D

    CAS  Google Scholar 

  5. P Borga M Nilsson A Tunlid (1994) ArticleTitleBacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis Soil Biol Biochem 26 841–848 Occurrence Handle10.1016/0038-0717(94)90300-X Occurrence Handle1:CAS:528:DyaK2cXkvVWqtLo%3D

    Article  CAS  Google Scholar 

  6. RJ Cicerone RS Ormland (1988) ArticleTitleBiogeochemical aspects of atmospheric methane Glob Biogeochem Cy 2 299–327 Occurrence Handle1:CAS:528:DyaK3cXksVCjtLk%3D

    CAS  Google Scholar 

  7. SN Dedysh PF Dunfield M Derakshani S Stubner J Heyer W Liesack (2003) ArticleTitleDifferential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rDNA-targeted fluorescent oligonucleotide probes FEMS Microbiol Ecol 43 299–308 Occurrence Handle1:CAS:528:DC%2BD3sXhvFeqtrw%3D

    CAS  Google Scholar 

  8. SN Dedysh VN Khmelenina NE Suzina YA Trotsenko JD Semrau W Liesack JM Tiedje (2002) ArticleTitleMethylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog Int J Syst Evol Microbiol 52 251–261 Occurrence Handle1:CAS:528:DC%2BD38XhsVWmtbc%3D Occurrence Handle11837310

    CAS  PubMed  Google Scholar 

  9. SN Dedysh W Liesack VN Khmelenina NE Suzina YA Trotsenko JD Semrau AM Bares NS Panikov JM Tiedje (2000) ArticleTitleMethylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs Int J Syst Evol Microbiol 50 955–969 Occurrence Handle1:CAS:528:DC%2BD3cXktF2gsrc%3D Occurrence Handle10843033

    CAS  PubMed  Google Scholar 

  10. PF Dunfield VN Khmelenina NE Suzina YA Trotsenko SN Dedysh (2003) ArticleTitleMethylocella silvestris sp. nov., a novel methanotrophic bacterium isolated from an acidic forest Cambisol Int J Syst Evol Microbiol 53 1231–1239 Occurrence Handle1:CAS:528:DC%2BD3sXotlymtbs%3D Occurrence Handle13130000

    CAS  PubMed  Google Scholar 

  11. PF Dunfield R Knowles R Dumont T Moore (1993) ArticleTitleMethane production and consumption in temperate and subarctic peat soils: response to temperature and pH Soil Biol Biochem 25 321–326 Occurrence Handle10.1016/0038-0717(93)90130-4 Occurrence Handle1:CAS:528:DyaK3sXisFeqtL8%3D

    Article  CAS  Google Scholar 

  12. PF Dunfield W Liesack T Henckel R Knowles R Conrad (1999) ArticleTitleHigh-affinity methane oxidation by soil enrichment culture containing a type II methanotroph Appl Environ Microbiol 65 1009–1014 Occurrence Handle1:CAS:528:DyaK1MXhslWkt7Y%3D Occurrence Handle10049856

    CAS  PubMed  Google Scholar 

  13. PF Dunfield M Tchawa Yimga SN Dedysh U Berger W Liesack J Heyer (2002) ArticleTitleIsolation of a Methylocystis strain containing a novel pmoA-like gene FEMS Microbiol Ecol 41 17–26 Occurrence Handle1:CAS:528:DC%2BD38XkslGmtrk%3D

    CAS  Google Scholar 

  14. C Edwards BA Hales GH Hall IR McDonald JC Murrell R Pickup DA Ritchie JR Saunders BM Simon M Upton (1998) ArticleTitleMicrobiological processes in the terrestrial carbon cycle: methane cycling in peat Atmos Environ 32 3247–3255 Occurrence Handle10.1016/S1352-2310(98)00107-1 Occurrence Handle1:CAS:528:DyaK1cXltFOhtbo%3D

    Article  CAS  Google Scholar 

  15. AM Ellison (2000) ArticleTitlePC-ORD version 4 review Bull Ecol Soc Am 81 127–128

    Google Scholar 

  16. MC Fisk KF Ruether JB Yavitt (2003) ArticleTitleMicrobial activity and functional composition among northern peatland ecosystems Soil Biol Biochem 35 591–602 Occurrence Handle10.1016/S0038-0717(03)00053-1 Occurrence Handle1:CAS:528:DC%2BD3sXis1yqsb0%3D

    Article  CAS  Google Scholar 

  17. H Goldstein (1995) Multilevel Statistical Models EditionNumber2 SeriesTitleKendall's Library of Statistics 3 Hodder Arnold London

    Google Scholar 

  18. DW Graham JA Chaudhary RS Hanson RG Arnold (1993) ArticleTitleFactors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors Microbial Ecol 25 1–17 Occurrence Handle10.1007/BF00182126 Occurrence Handle1:CAS:528:DyaK3sXitlSjtLk%3D

    Article  CAS  Google Scholar 

  19. RS Hanson TE Hanson (1996) ArticleTitleMethanotrophic bacteria Microbiol Rev 60 439–471 Occurrence Handle1:CAS:528:DyaK28XktVejur8%3D Occurrence Handle8801441

    CAS  PubMed  Google Scholar 

  20. T Henckel M Friedrich R Conrad (1999) ArticleTitleMolecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase Appl Environ Microbiol 65 1980–1990 Occurrence Handle1:CAS:528:DyaK1MXjtVams7o%3D Occurrence Handle10223989

    CAS  PubMed  Google Scholar 

  21. J Heyer VF Galchenko PF Dunfield (2002) ArticleTitleMolecular phylogeny of type II methane-oxidizing bacteria isolated from various environments Microbiology 148 2831–2846 Occurrence Handle1:CAS:528:DC%2BD38Xnt1elu7w%3D Occurrence Handle12213929

    CAS  PubMed  Google Scholar 

  22. AJ Holmes A Costello ME Lidstrom JC Murrell (1995) ArticleTitleEvidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related FEMS Microbiol Lett 132 203–208 Occurrence Handle1:CAS:528:DyaK2MXoslGntb4%3D Occurrence Handle7590173

    CAS  PubMed  Google Scholar 

  23. BW Hütch CP Webster DS Powlson (1994) ArticleTitleMethane oxidation in soil as affected by land use, soil pH and fertilization Soil Biol Biochem 26 1613–1622

    Google Scholar 

  24. H Hökkä S Kaunisto KT Korhonen J Päivänen A Reinikainen E Tomppo (2002) Suomen suometsät 1951–1994. Metsätieteen aikakauskirja 2B Metsäntutkimuslaitos Helsinki

    Google Scholar 

  25. HAP Ingram (1992) Introduction to the ecohydrology of mires in the context of cultural perturbation OM Bragg PD Hulme HAP Ingram RA Robertson (Eds) Peatland Ecosystems and Man: An Impact Assessment British Ecological Society/International Peat Society Dundee 67–93

    Google Scholar 

  26. K Jaatinen C Knief PF Dunfield K Yrjälä H Fritze (2004) ArticleTitleMethanotrophic bacteria in boreal forest soil after fire FEMS Microbiol Ecol 50 195–202 Occurrence Handle1:CAS:528:DC%2BD2cXpslOls7w%3D

    CAS  Google Scholar 

  27. A Kettunen V Kaitala A Lehtinen A Lohila J Alm J Silvola PJ Martikainen (1999) ArticleTitleMethane production and oxidation potentials in relation to water table fluctuations in two boreal mires Soil Biol Biochem 31 1741–1749 Occurrence Handle10.1016/S0038-0717(99)00093-0 Occurrence Handle1:CAS:528:DyaK1MXmtFals78%3D

    Article  CAS  Google Scholar 

  28. MAK Khalil RA Rasmussen (1983) ArticleTitleSources, sinks and seasonal cycles of atmospheric methane J Geophys Res 88 5131–5151 Occurrence Handle1:CAS:528:DyaL3sXksFKrurs%3D

    CAS  Google Scholar 

  29. C Knief A Lipski PF Dunfield (2003) ArticleTitleDiversity and activity of methanotrophic bacteria in different upland soils which oxidize atmospheric methane Appl Environ Microbiol 69 6703–6714 Occurrence Handle10.1128/AEM.69.11.6703-6714.2003 Occurrence Handle1:CAS:528:DC%2BD3sXptVyktL8%3D Occurrence Handle14602631

    Article  CAS  PubMed  Google Scholar 

  30. LR Krumholz JL Hollenback SJ Roskes DB Ringelberg (1995) ArticleTitleMethanogenesis and methanotrophy within a Sphagnum peatland FEMS Microbiol Ecol 18 215–224 Occurrence Handle1:CAS:528:DyaK2MXpsV2ls7w%3D

    CAS  Google Scholar 

  31. R Laiho H Vasander T Penttilä J Laine (2003) ArticleTitleDynamics of plant-mediated organic matter and nutrient cycling following long-term water-level drawdown in boreal peatlands Glob Biogeochem Cy 17 1053

    Google Scholar 

  32. J Laine V-M Komulainen R Laiho K Minkkinen A Rasinmäki T Sallantaus S Sarkkola N Silvan K Tolonen E-S Tuittila H Vasander J Päivänen (2004) ArticleTitleLakkasuo—a guide to mire ecosystem Dept Forest Ecol Univ Hels 31 1–123

    Google Scholar 

  33. J Laine H Vasander R Laiho (1995) ArticleTitleLong-term effects of water level drawdown on vegetation of drained pine mires in southern Finland J Appl Ecol 32 785–802

    Google Scholar 

  34. KR Lassey DC Lowe MR Manning (2000) ArticleTitleThe trend in atmospheric 13C and implications for isotopic constrains on the global methane budget Glob Biogeochem Cy 14 41–49 Occurrence Handle1:CAS:528:DC%2BD3cXhvVGnu78%3D

    CAS  Google Scholar 

  35. W Ludwig O Strunk R Westram L Richter H Meier Yadhukumar A Buchner T Lai S Steppi G Jobb W Förster I Brettske S Gerber AW Ginhart O Gross S Grumann S Hermann R Jost A König T Liss R Lüßmann M May B Nonhoff B Reichel R Strehlow A Stamatakis N Stuckmann A Vilbig M Lenke T Ludwig Bode K-H Schleifer (2004) ArticleTitleARB: a software environment for sequence data Nucleic Acids Res 32 1363–1371 Occurrence Handle10.1093/nar/gkh293 Occurrence Handle1:CAS:528:DC%2BD2cXhvFSqu7k%3D Occurrence Handle14985472

    Article  CAS  PubMed  Google Scholar 

  36. N Malmer DG Horton D Vitt (1992) ArticleTitleElement concentration in mosses and surface waters of western Canadian mires in relation to precipitation chemistry and hydrology Ecography 15 114–128

    Google Scholar 

  37. IR McDonald GH Hall RW Pickup JC Murrell (1996) ArticleTitleMethane oxidation potential and preliminary analysis of methanotrophs in blanket bog peat using molecular ecology techniques FEMS Microbiol Ecol 21 197–211 Occurrence Handle1:CAS:528:DyaK28XmsVynsrk%3D

    CAS  Google Scholar 

  38. IR McDonald M Upton G Hall RW Pickup C Edwards JR Saunders DA Ritchie (1999) ArticleTitleMolecular ecological analysis of methanogens and methanotrophs in blanket bog peat Microbial Ecol 38 225–233 Occurrence Handle10.1007/s002489900172 Occurrence Handle1:CAS:528:DyaK1MXnslyqtLw%3D

    Article  CAS  Google Scholar 

  39. K Minkkinen R Korhonen I Savolainen J Laine (2002) ArticleTitleCarbon balance and radiative forcing of Finnish peatlands in 1900–2100—impacts of drainage for forestry Global Change Biol 8 785–799 Occurrence Handle10.1046/j.1365-2486.2002.00504.x

    Article  Google Scholar 

  40. K Minkkinen H Vasander S Jauhiainen M Karsisto J Laine (1999) ArticleTitlePost-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland Plant Soil 207 107–120

    Google Scholar 

  41. TR Moore M Dalva (1997) ArticleTitleMethane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations Soil Biol Biochem 29 1157–1164 Occurrence Handle10.1016/S0038-0717(97)00037-0 Occurrence Handle1:CAS:528:DyaK2sXksFChurs%3D

    Article  CAS  Google Scholar 

  42. TR Moore R Knowles (1989) ArticleTitleThe influence of water tables on methane and carbon dioxide emissions from peatland soils Can J Soil Sci 69 33–38 Occurrence Handle1:CAS:528:DyaL1MXhvFWlt7o%3D

    CAS  Google Scholar 

  43. SA Morris S Radajewski TW Willison JC Murrell (2002) ArticleTitleIdentification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing Appl Environ Microbiol 68 1446–1453 Occurrence Handle10.1128/AEM.68.3.1446-1453.2002 Occurrence Handle1:CAS:528:DC%2BD38XitFSjsbo%3D Occurrence Handle11872500

    Article  CAS  PubMed  Google Scholar 

  44. JC Murrell B Gilbert IR McDonald (2000) ArticleTitleMolecular biology and regulation of methane monooxygenase Arch Microbiol 173 325–332 Occurrence Handle10.1007/s002030000158 Occurrence Handle1:CAS:528:DC%2BD3cXksFKmt7s%3D Occurrence Handle10896210

    Article  CAS  PubMed  Google Scholar 

  45. T Müller M Vingron (2000) ArticleTitleModeling amino acid replacement J Comput Biol 7 761–776 Occurrence Handle11382360

    PubMed  Google Scholar 

  46. H Nykänen J Alm J Silvola K Tolonen PJ Martikainen (1998) ArticleTitleMethane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates Glob Biogeochem Cy 12 53–69

    Google Scholar 

  47. T Pennanen S Caul TJ Daniell BS Griffiths K Ritz RE Wheatley (2004) ArticleTitleCommunity-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs Soil Biol Biochem 36 841–848 Occurrence Handle10.1016/j.soilbio.2004.01.014 Occurrence Handle1:CAS:528:DC%2BD2cXivVCkurs%3D

    Article  CAS  Google Scholar 

  48. T Pennanen L Paavolainen J Hantula (2001) ArticleTitleRapid PCR-based method for the direct analysis of fungal communities in complex environmental samples Soil Biol Biochem 33 697–699 Occurrence Handle10.1016/S0038-0717(00)00198-X Occurrence Handle1:CAS:528:DC%2BD3MXis1aksbw%3D

    Article  CAS  Google Scholar 

  49. TJ Popp JP Chanton GJ Whiting N Grant (2000) ArticleTitleEvaluation of methane oxidation in the rhizosphere of a Carex dominated fen in north central Alberta Biogeochemistry 51 259–281 Occurrence Handle10.1023/A:1006452609284 Occurrence Handle1:CAS:528:DC%2BD3cXnsFChtb0%3D

    Article  CAS  Google Scholar 

  50. S Radajewski JC Murrell (2001) Stable isotope probing for detection of methanotrophs after enrichment with 13CH4 BA Lieberman (Eds) Methods in Molecular Biology, vol. 176: Steroid Receptor Method: Protocols and Assays Humana Press Inc. Totowa, NJ 149–157

    Google Scholar 

  51. Rasbash, J, Browne, W, Goldstein, H, Yang, M, Plewis, I, Healy, M, Woodhouse, G, Draper, D, Langford, I, Lewis, T (2000) A user's guide to MlwiN. Version 2.1c. Centre for Multilevel Modelling, Institute of Education, University of London

  52. S Saarnio J Alm J Silvola A Lohila H Nykänen PJ Martikainen (1997) ArticleTitleSeasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen Oecologia 110 414–422 Occurrence Handle10.1007/s004420050176

    Article  Google Scholar 

  53. K Strimmer A Haeseler (1996) ArticleTitleQuartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies Mol Biol Evol 13 964–969 Occurrence Handle1:CAS:528:DyaK28XltlSmsLk%3D

    CAS  Google Scholar 

  54. I Sundh P Borgå M Nilsson BH Svensson (1995) ArticleTitleEstimation of cell numbers of methanotrophic bacteria in boreal peatlands based on analysis of specific phospholipid fatty acids FEMS Microbiol Ecol 18 103–112 Occurrence Handle1:CAS:528:DyaK2MXptVegt7k%3D

    CAS  Google Scholar 

  55. I Sundh M Nilsson G Granberg BH Svensson (1994) ArticleTitleDepth distribution of microbial production and oxidation of methane in northern boreal peatlands Microbial Ecol 27 253–265 Occurrence Handle10.1007/BF00182409 Occurrence Handle1:CAS:528:DyaK2cXmtVChsrc%3D

    Article  CAS  Google Scholar 

  56. M Tchawa Yimga PF Dunfield P Ricke J Heyer W Liesack (2003) ArticleTitleWide distribution of a novel pmoA-like gene copy among type II methanotrophs and its expression in Methylocystis strain SC2 Appl Environ Microbiol 69 5593–5602 Occurrence Handle10.1128/AEM.69.9.5593-5602.2003 Occurrence Handle12957949

    Article  PubMed  Google Scholar 

  57. EJ Vainio J Hantula (2000) ArticleTitleDirect analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA Mycol Res 104 927–936 Occurrence Handle10.1017/S0953756200002471 Occurrence Handle1:CAS:528:DC%2BD3cXmvVWitro%3D

    Article  CAS  Google Scholar 

  58. MG Wise JV McArthur LJ Shimkets (1999) ArticleTitleMethanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis Appl Environ Microbiol 65 4887–4897 Occurrence Handle1:CAS:528:DyaK1MXnt1Wmtbw%3D Occurrence Handle10543800

    CAS  PubMed  Google Scholar 

  59. JB Yavit DM Downey E Lancaster GE Lang (1990) ArticleTitleMethane consumption in decomposing Sphagnum-derived peat Soil Biol Biochem 22 441–447

    Google Scholar 

  60. Yavit, JB, Lang, GE (1987) Aerobic methane oxidation in the surface peat from a mass-dominated wetland in West Virginia. Abstr Reports, 193rd ACS National Meeting, Symp on Atmospheric Methane, Denver, CO, April 5–10, 1987

  61. C Yeates MR Gillings (1998) ArticleTitleRapid purification of DNA fromsoil for molecular biodiversity analysis Lett Appl Microbiol 27 49–53 Occurrence Handle10.1046/j.1472-765X.1998.00383.x Occurrence Handle1:CAS:528:DyaK1cXlslWrsro%3D

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Saara Korpela, Sirpa Tiikkainen, and Mirva Sandberg for the excellent technical assistance and laboratory support during the sample analysis and Anne Siika for the help with the illustrations. Raija Laiho kindly helped with the statistical analyses. Stephen Venn corrected the language. This work was supported by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jaatinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaatinen, K., Tuittila, ES., Laine, J. et al. Methane-Oxidizing Bacteria in a Finnish Raised Mire Complex: Effects of Site Fertility and Drainage. Microb Ecol 50, 429–439 (2005). https://doi.org/10.1007/s00248-005-9219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-005-9219-x

Keywords

Navigation