Skip to main content
Log in

Pediatric applications of functional magnetic resonance imaging

  • Advances in Pediatric Neuroradiology
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child’s age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Medina LS, Aguirre E, Bernal B (2004) Functional MR imaging versus Wada test for evaluation of language lateralization: cost analysis. Radiology 230:49–54

    Article  PubMed  Google Scholar 

  2. Bookheimer SY (1996) Functional MRI applications in clinical epilepsy. Neuroimage 4:S139–S146

    Article  CAS  PubMed  Google Scholar 

  3. Nagel BJ, Barlett VC, Schweinsburg AD et al (2005) Neuropsychological predictors of BOLD response during a spatial working memory task in adolescents: what can performance tell us about fMRI response patterns? J Clin Exp Neuropsychol 7:823–839

    Article  Google Scholar 

  4. Kastrup A, Krüger G, Neumann-Haefelin T (2002) Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage 15:74–82

    Article  PubMed  Google Scholar 

  5. Price C, Wise R, Ramsay S et al (1992) Regional response differences within the human auditory cortex when listening to words. Neurosci Lett 146:179–182

    Article  CAS  PubMed  Google Scholar 

  6. Bookheimer SY, Dapretto M, Cohen MS et al (1996) Functional MRI of the hippocampus during short term memory tasks: parametric responses to task difficulty and stimulus novelty. Neuroimage 3:S351

    Article  Google Scholar 

  7. Raichle ME, Fiez JA, Videen TO et al (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 4:8–26

    Article  CAS  PubMed  Google Scholar 

  8. Bookheimer SY, Dapretto M, Karmarkar U (1999) Functional MRI in children with epilepsy. Dev Neurosci 21:191–199

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg DR, Sweeney JA, Gillen JS et al (1997) Magnetic resonance imaging of children without sedation: preparation with simulation. J Am Acad Child Adolesc Psychiatry 36:853–859

    Article  CAS  PubMed  Google Scholar 

  10. Yamada H, Sadato N, Konishi Y et al (1997) A rapid brain metabolic change in infants detected by fMRI. Neuroreport 8:3775–3778

    Article  CAS  PubMed  Google Scholar 

  11. Born P, Leth H, Miranda MJ et al (1998) Visual activation in infants and young children studied by functional magnetic resonance imaging. Pediatr Res 44:578–583

    Article  CAS  PubMed  Google Scholar 

  12. Martin E, Joeri P, Loenneker T et al (1999) Visual processing in infants and children studied using functional MRI. Pediatr Res 46:135–140

    Article  CAS  PubMed  Google Scholar 

  13. Souweidane MM, Kim K, McDowall R et al (1999) Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatr Neurosurg 30:86–92

    Article  CAS  PubMed  Google Scholar 

  14. Born A, Miranda MJ, Rostrup E et al (2000) Functional magnetic resonance imaging of the normal and abnormal visual system in early life. Neuropediatrics 31:24–32

    Article  CAS  PubMed  Google Scholar 

  15. Morita T, Kochiyama T, Yamada H et al (2000) Difference in the metabolic response to photic stimulation of the lateral geniculate nucleus and the primary visual cortex of infants: a fMRI study. Neurosci Res 38:63–70

    Article  CAS  PubMed  Google Scholar 

  16. Yamada H, Sedato N, Konishi Y et al (2000) A milestone for normal development of the infantile brain detected by functional MRI. Neurology 55:218–223

    Article  CAS  PubMed  Google Scholar 

  17. Altman NR, Bernal B (2001) Brain activation in sedated children: auditory and visual functional MR imaging. Radiology 221:56–63

    Article  CAS  PubMed  Google Scholar 

  18. Carmody DP, Moreno P, Mars AE et al (2007) Brief report: brain activation to social words in a sedated child with autism. J Autism Dev Disord 37:1381–1385

    Article  PubMed  Google Scholar 

  19. Gemma M, de Vitis A, Baldoli C et al (2009) Functional magnetic resonance imaging (fMRI) in children sedated with propofol or midazolam. J Neurosurg Anesthesiol 21:253–258

    Article  PubMed  Google Scholar 

  20. Bernal B, Grossman S, Gonzalez R et al (2012) FMRI under sedation: what is the best choice in children? J Clin Med Res 4:363–470

    PubMed Central  PubMed  Google Scholar 

  21. Marcar VL, Schwarz U, Martin E et al (2006) How depth of anesthesia influences the blood oxygenation level-dependent signal from the visual cortex of children. AJNR Am J Neuroradiol 27:799–805

    CAS  PubMed  Google Scholar 

  22. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L et al (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015

    Article  CAS  PubMed  Google Scholar 

  23. Wilke M, Holland SK, Ball WS Jr (2003) Language processing during natural sleep in a 6-year-old boy, as assessed with functional MR imaging. AJNR Am J Neuroradiol 24:42–44

    PubMed Central  PubMed  Google Scholar 

  24. Hertz-Pannier L, Gaillard W, Mott SH et al (1997) Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48:1003

    Article  CAS  PubMed  Google Scholar 

  25. Georgiewa P, Rzanny R, Hopf JM et al (1999) FMRI during word processing in dyslexic and normal reading children. Neuroreport 10:3459–3465

    Article  CAS  PubMed  Google Scholar 

  26. Cravo I, Palma T, Conceicao C et al (2001) Preoperative applications of cortical mapping with functional magnetic resonance. Acta Med Port 14:21–25

    CAS  PubMed  Google Scholar 

  27. Booth JR, Macwhinney B, Thulborn KR et al (1999) Functional organization of activation patterns in children: whole brain fMRI imaging during three different cognitive tasks. Prog Neuropsychopharmacol Biol Psychiatry 23:669–682

    Article  CAS  PubMed  Google Scholar 

  28. Holland SK, Macwhinney B, Thulborn KR et al (2001) Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage 14:837–843

    Article  CAS  PubMed  Google Scholar 

  29. Liegeois F, Connelly A, Cross JH et al (2004) Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain 127:1229–1236

    Article  CAS  PubMed  Google Scholar 

  30. Schapiro MB, Schmithorst VJ, Willke M et al (2004) BOLD fMRI signal increases with age in selected brain regions in children. Neuroreport 15:2575–2578

    Article  PubMed Central  PubMed  Google Scholar 

  31. Szaflarski JP, Holland SK, Schmithorst VJ et al (2006) FMRI study of language lateralization in children and adults. Hum Brain Mapp 27:202–212

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gaillard WD, Balsamo L, Xu B et al (2004) FMRI language task panel improves determination of language dominance. Neurology 63:1403–1408

    Article  CAS  PubMed  Google Scholar 

  33. Lehericy S, Cohen L, Bazin B et al (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54:1625–1633

    Article  CAS  PubMed  Google Scholar 

  34. Jacola LM, Schapiro MB, Schmithorst VJ et al (2006) Functional magnetic resonance imaging reveals atypical language organization in children following perinatal left middle cerebral artery stroke. Neuropediatrics 37:46–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Vannest JJ, Kurunanayaka P, Altaye M et al (2009) Comparison of fMRI data from passive listening and active-response story processing tasks in children. J Magn Reson Imaging 29:971–976

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ahmad Z, Balsamo LM, Sachs BC et al (2003) Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology 60:1598–1605

    Article  CAS  PubMed  Google Scholar 

  37. Gaillard WD, Berl M, Moore EN et al (2007) Atypical language in lesional and nonlesional complex partial epilepsy. Neurology 69:1761–1771

    Article  CAS  PubMed  Google Scholar 

  38. Rutten GJ, vanRijen P, van Veelen CWM et al (1999) Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol 46:405–408

    Article  CAS  PubMed  Google Scholar 

  39. Turkeltaub PE, Flowers DL, Lyon LG et al (2008) Development of ventral stream representations for single letters. Ann N Y Acad Sci 1145:13–29

    Article  PubMed  Google Scholar 

  40. Ulualp SO, Biswal BB, Yetkin FZ et al (1998) Functional magnetic resonance imaging of auditory cortex in children. Laryngoscope 108:1782–1786

    Article  CAS  PubMed  Google Scholar 

  41. Kansaku K, Yamaura A, Kitazawa S (2000) Sex differences in lateralization revealed in the posterior language areas. Cereb Cortex 10:866–872

    Article  CAS  PubMed  Google Scholar 

  42. Gaillard WD, Pugliese M, Grandin CB et al (2001) Cortical localization of reading in normal children: an fMRI language study. Neurology 57:47–54

    Article  CAS  PubMed  Google Scholar 

  43. Ojemann GA (1991) Cortical organization of language. J Neurosci 11:2281–2287

    CAS  PubMed  Google Scholar 

  44. Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358:18–27

    Article  CAS  PubMed  Google Scholar 

  45. Boakye M, Huckins S, Szevernyi N et al (2000) Functional magnetic resonance imaging of somatosensory cortex activity produced by electrical stimulation of the median nerve or tactile stimulation of the index finger. J Neurosurg 93:774–783

    Article  CAS  PubMed  Google Scholar 

  46. Chapman SB, McKinnon L (2000) Discussion of developmental plasticity: factors affecting cognitive outcome after pediatric traumatic brain injury. J Commun Disord 33:333–344

    Article  CAS  PubMed  Google Scholar 

  47. Jacobs KM, Graber KD, Kharazia VN et al (2000) Postlesional epilepsy: the ultimate brain plasticity. Epilepsia 41:153–161

    Article  Google Scholar 

  48. Schwartzkroin PA (2001) Mechanisms of brain plasticity: from normal brain function to pathology. Int Rev Neurobiol 45:1–15

    Article  CAS  PubMed  Google Scholar 

  49. Kang HC, Burgund E, Lugar HM et al (2003) Comparison of functional activation foci in children and adults using a common stereotactic space. Neuroimage 19:16–28

    Article  PubMed  Google Scholar 

  50. Ferretti A, del Gratta C, Babiloni C et al (2004) Functional topography of the secondary somatosensory cortex for nonpainful and painful stimulation of median and tibial nerve: an fMRI study. Neuroimage 23:1217–1225

    Article  PubMed  Google Scholar 

  51. Manganotti P, Formaggio E, Storti SF et al (2009) Steady-state activation in somatosensory cortex after changes in stimulus rate during median nerve stimulation. Magn Reson Imaging 27:1175–1186

    Article  PubMed  Google Scholar 

  52. Eilers RE, Minifie FD (1975) Fricative discrimination in early infancy. J Speech Hear Res 18:158–167

    Article  CAS  PubMed  Google Scholar 

  53. Hohne EA, Jusczyk PW (1994) Two-month-old infants’ sensitivity to allophonic differences. Percept Psychophys 56:613–623

    Article  CAS  PubMed  Google Scholar 

  54. Hirsch J, Ruge MI, Kim K et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 47:711–721

    CAS  PubMed  Google Scholar 

  55. Rivkin MJ, Vajapeyam S, Hutton C et al (2003) A functional magnetic resonance imaging study of paced finger tapping in children. Pediatr Neurol 28:89–95

    Article  PubMed  Google Scholar 

  56. Ullen F, Forssberg H, Ehrsson HH (2003) Neural networks for the coordination of the hands in time. J Neurophysiol 89:1126–1135

    Article  PubMed  Google Scholar 

  57. Mostofsky SH, Rimrodt SL, Schafer JGB et al (2006) Atypical motor and sensory cortex activation in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study of simple sequential finger tapping. Biol Psychiatry 59:48–56

    Article  PubMed  Google Scholar 

  58. Mall V, Linder M, Herpes M et al (2005) Recruitment of the sensorimotor cortex — a developmental fMRI study. Neuropediatrics 36:373–379

    Article  CAS  PubMed  Google Scholar 

  59. Lee CC, Jack CR Jr, Riederer SJ (1998) Mapping of the central sulcus with functional MR: active versus passive activation tasks. AJNR Am J Neuroradiol 19:847–852

    CAS  PubMed  Google Scholar 

  60. Roux FE, Ibarrola D, Lazorthes Y et al (2001) Chronic motor cortex stimulation for phantom limb pain: a functional magnetic resonance imaging study: technical case report. Neurosurgery 48:681–687

    Article  CAS  PubMed  Google Scholar 

  61. Hoeller M, Krings T, Reinges MH et al (2002) Movement artefacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir (Wien) 144:279–284

    Article  CAS  Google Scholar 

  62. Krings T, Töpper R, Willmes K et al (2002) Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology 58:381–390

    Article  CAS  PubMed  Google Scholar 

  63. Fandino J, Kollias S, Wieser H et al (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91:238–250

    Article  CAS  PubMed  Google Scholar 

  64. Carpentier AC, Constable RT, Schlosser M et al (2001) Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system. J Neurosurg 94:946–954

    Article  CAS  PubMed  Google Scholar 

  65. Vandermeeren Y, De Volder A, Bastings E et al (2002) Functional relevance of abnormal fMRI activation pattern after unilateral schizencephaly. Neuroreport 13:1821–1824

    Article  PubMed  Google Scholar 

  66. Staudt M, Pieper T, Grodd W et al (2001) Functional MRI in a 6-year-old boy with unilateral cortical malformation: concordant representation of both hands in the unaffected hemisphere. Neuropediatrics 32:159–161

    Article  CAS  PubMed  Google Scholar 

  67. Hartnick CJ, Rudolph C, Willging JP et al (2001) Functional magnetic resonance imaging of the pediatric swallow: imaging the cortex and the brainstem. Laryngoscope 111:1183–1191

    Article  CAS  PubMed  Google Scholar 

  68. Puce A (1995) Comparative assessment of sensorimotor function using functional magnetic resonance imaging and electrophysiological methods. J Clin Neurophysiol 12:450–459

    Article  CAS  PubMed  Google Scholar 

  69. Puce A, Constable RT, Luby M et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270

    Article  CAS  PubMed  Google Scholar 

  70. Yousry T, Schmid U, Schmidt D et al (1995) The motor hand area. Noninvasive detection with functional MRI and surgical validation with cortical stimulation. Radiologe 35:252–255

    CAS  PubMed  Google Scholar 

  71. Deuchert M, Ruben J, Schwiemann J et al (2002) Event-related fMRI of the somatosensory system using electrical finger stimulation. Neuroreport 13:365–369

    Article  PubMed  Google Scholar 

  72. Born A, Law I, Lund T et al (2002) Cortical deactivation induced by visual stimulation in human slow-wave sleep. Neuroimage 17:1325–1335

    Article  PubMed  Google Scholar 

  73. Meek JH, Firbank M, Elwell C et al (1998) Regional hemodynamic responses to visual stimulation in awake infants. Pediatr Res 43:840–843

    Article  CAS  PubMed  Google Scholar 

  74. Born AP, Rostrup E, Miranda MJ et al (2002) Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR). Magn Reson Imaging 20:199–205

    Article  CAS  PubMed  Google Scholar 

  75. Marcar VL, Strassle E, Loenneker T et al (2004) The influence of cortical maturation on the BOLD response: an fMRI study of visual cortex in children. Pediatr Res 56:967–974

    Article  PubMed  Google Scholar 

  76. Yeh CI, Xing D, Shapley RM (2009) ‘Black’ responses dominate macaque primary visual cortex v1. J Neurosci 29:11753–11760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Wiesel TN, Hubel DH (1966) Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29:1115–1156

    CAS  PubMed  Google Scholar 

  78. Bedwell JS, Miller LS, Fletcher JM et al (2006) Schizophrenia and red light: fMRI evidence for a novel biobehavioral marker. Int J Neurosci 116:881–894

    Article  PubMed  Google Scholar 

  79. Wang X, Takano T, Nedergaard M (2009) Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Methods Mol Biol 489:93–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Miki A, Liu GT, Fletcher DW et al (2001) Ocular dominance in anterior visual cortex in a child demonstrated by the use of fMRI. Pediatr Neurol 24:232–234

    Article  CAS  PubMed  Google Scholar 

  81. Bernal B, Altman N (2004) Visual functional magnetic resonance imaging in patients with Sturge–Weber syndrome. Pediatr Neurol 31:9–15

    Article  PubMed  Google Scholar 

  82. Sininger YS, Doyle KJ, Moore JK (1999) The case for early identification of hearing loss in children. Auditory system development, experimental auditory deprivation, and development of speech perception and hearing. Pediatr Clin North Am 46:1–14

    Article  CAS  PubMed  Google Scholar 

  83. Paradise JL, Dollaghan CA, Campbell TF et al (2000) Language, speech sound production, and cognition in three-year-old children in relation to otitis media in their first three years of life. Pediatrics 105:1119–1130

    Article  CAS  PubMed  Google Scholar 

  84. Anderson AW, Marois R, Colson ER et al (2001) Neonatal auditory activation detected by functional magnetic resonance imaging. Magn Reson Imaging 19:1–5

    Article  PubMed  Google Scholar 

  85. Spreen O, Risser A, Edgell D (1995) Developmental neuropsychology. Oxford University Press, New York

    Google Scholar 

  86. Johansson B, Wedenberg E, Westin B (1964) Measurement of tone response by the human foetus. A preliminary report. Acta Otolaryngol 57:188–192

    Article  CAS  PubMed  Google Scholar 

  87. Hykin J, Moore R, Duncan K et al (1999) Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet 354:645–646

    Article  CAS  PubMed  Google Scholar 

  88. Moore RJ, Vadeyar S, Fulford J et al (2001) Antenatal determination of fetal brain activity in response to an acoustic stimulus using functional magnetic resonance imaging. Hum Brain Mapp 12:94–99

    Article  CAS  PubMed  Google Scholar 

  89. Fulford J, Vadeyar S, Dodampahala SH et al (2004) Fetal brain activity and hemodynamic response to a vibroacoustic stimulus. Hum Brain Mapp 22:116–121

    Article  PubMed  Google Scholar 

  90. Jardri R, Pins D, Thomas P (2008) A case of fMRI-guided rTMS treatment of coenesthetic hallucinations. Am J Psychiatry 165:1490–1491

    Article  PubMed  Google Scholar 

  91. Thomason ME, Race E, Burrows B et al (2009) Development of spatial and verbal working memory capacity in the human brain. J Cogn Neurosci 21:316–332

    Article  PubMed Central  PubMed  Google Scholar 

  92. Nelson CA, Monk CS, Lin J et al (2000) Functional neuroanatomy of spatial working memory in children. Dev Psychol 36:109–116

    Article  CAS  PubMed  Google Scholar 

  93. Casey BJ, Cohen JD, Jezzard P et al (1995) Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. Neuroimage 2:221–229

    Article  CAS  PubMed  Google Scholar 

  94. Geier CF, Garver K, Terwilliger R et al (2009) Development of working memory maintenance. J Neurophysiol 101:84–99

    Article  PubMed Central  PubMed  Google Scholar 

  95. Golby A, Poldrack RA, Illes J et al (2002) Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia 43:855–863

    Article  PubMed  Google Scholar 

  96. Jokeit H, Okujava M, Woermann FG (2001) Memory fMRI lateralizes temporal lobe epilepsy. Neurology 57:1786–1793

    Article  CAS  PubMed  Google Scholar 

  97. Jackson GD, Connelly A, Cross JH et al (1994) Functional magnetic resonance imaging of focal seizures. Neurology 44:850–856

    Article  CAS  PubMed  Google Scholar 

  98. Schwartz TH, Resor SRJ, De La Paz R et al (1998) Functional magnetic resonance imaging localization of ictal onset to a dysplastic cleft with simultaneous sensorimotor mapping: intraoperative electrophysiological confirmation and postoperative follow-up: technical note. Neurosurgery 43:639–644

    Article  CAS  PubMed  Google Scholar 

  99. Liu Y, Yang T, Liao W et al (2008) EEG-fMRI study of the ictal and interictal epileptic activity in patients with eyelid myoclonia with absences. Epilepsia 49:2078–2086

    Article  PubMed  Google Scholar 

  100. Leal AJ, Monteiro JP, Secca MF et al (2009) Functional brain mapping of ictal activity in gelastic epilepsy associated with hypothalamic hamartoma: a case report. Epilepsia 50:1624–1631

    Article  PubMed  Google Scholar 

  101. Detre JA, Sirven JI, Alsop DC et al (1995) Localization of subclinical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring. Ann Neurol 38:618–624

    Article  CAS  PubMed  Google Scholar 

  102. Morocz IA, Karni A, Haut S et al (2003) fMRI of triggerable aurae in musicogenic epilepsy. Neurology 60:705–709

    Article  CAS  PubMed  Google Scholar 

  103. Archer JS, Briellmann RS, Syngeniotis A et al (2003) Spike-triggered fMRI in reading epilepsy: involvement of left frontal cortex working memory area. Neurology 60:415–421

    Article  CAS  PubMed  Google Scholar 

  104. Abreu P, Ribeiro M, Forni A et al (2005) Writing epilepsy: a neurophysiological, neuropsychological and neuroimaging study. Epilepsy Behav 6:463–466

    Article  PubMed  Google Scholar 

  105. Seeck M, Lazeyras F, Michel CM et al (1998) Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr Clin Neurophysiol 106:508–512

    Article  CAS  PubMed  Google Scholar 

  106. Krakow K, Woermann FG, Symms MR et al (1999) EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain 122:1679–1688

    Article  PubMed  Google Scholar 

  107. Lazeyras F, Blanke O, Perrig S et al (2000) EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging 12:177–185

    Article  CAS  PubMed  Google Scholar 

  108. Leal A, Dias A, Vieira JP et al (2006) The BOLD effect of interictal spike activity in childhood occipital lobe epilepsy. Epilepsia 47:1536–1542

    Article  PubMed  Google Scholar 

  109. Masuoka LK, Anderson AW, Gore JC et al (1999) Functional magnetic resonance imaging identifies abnormal visual cortical function in patients with occipital lobe epilepsy. Epilepsia 40:1248–1253

    Article  CAS  PubMed  Google Scholar 

  110. Müller R-A, Kleinhans N, Kemmotsu N et al (2003) Abnormal variability and distribution of functional maps in autism: an fMRI study of visuomotor learning. Am J Psychiatry 160:1847–1862

    Article  PubMed  Google Scholar 

  111. Schultz RT, Gauthier I, Klin A et al (2000) Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry 57:331–340

    Article  CAS  PubMed  Google Scholar 

  112. Schultz RT, Grelotti DJ, Klin A et al (2003) The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philos Trans R Soc Lond B Biol Sci 358:415–427

    Article  PubMed Central  PubMed  Google Scholar 

  113. Grelotti DJ, Klin AJ, Gauthier I et al (2005) FMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia 43:373–385

    Article  PubMed  Google Scholar 

  114. Bölte S, Hubl D, Feineis-Matthews S et al (2006) Facial affect recognition training in autism: can we animate the fusiform gyrus? Behav Neurosci 120:211–216

    Article  PubMed  Google Scholar 

  115. Takeuchi M, Harada M, Matsuzaki K et al (2004) Difference of signal change by a language task on autistic patients using functional MRI. J Med Investig 51:59–62

    Article  Google Scholar 

  116. Gomot M, Bernard FA, Davis MH et al (2006) Change detection in children with autism: an auditory event-related fMRI study. Neuroimage 29:475–484

    Article  PubMed  Google Scholar 

  117. Müller RA, Pierce K, Ambrose JB et al (2001) Atypical patterns of cerebral motor activation in autism: a functional magnetic resonance study. Biol Psychiatry 49:665–676

    Article  PubMed  Google Scholar 

  118. Dapretto M, Davies MS, Pfeifer JH et al (2005) Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 9:28–30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Baron-Cohen S, Ring H, Chitnis X et al (2006) FMRI of parents of children with Asperger syndrome: a pilot study. Brain Cogn 61:122–130

    Article  PubMed  Google Scholar 

  120. Baumeister AA, Hawkins MF (2001) Incoherence of neuroimaging studies of attention deficit/hyperactivity disorder. Clin Neuropharmacol 24:2–10

    Article  CAS  PubMed  Google Scholar 

  121. Sunshine JL, Lewin JS, Wu DH et al (1997) Functional MR to localize sustained visual attention activation in patients with attention deficit hyperactivity disorder: a pilot study. AJNR Am J Neuroradiol 18:633–637

    CAS  PubMed  Google Scholar 

  122. Booth JR, Burman DD, Meyer JR et al (2005) Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry 46:94–111

    Article  PubMed  Google Scholar 

  123. Durston S, Tottenham NT, Thomas KM et al (2003) Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry 53:871–878

    Article  PubMed  Google Scholar 

  124. Vaidya CJ, Austin G, Kirkorian G et al (1998) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 95:14494–14499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Rubia K, Smith AB, Brammer MJ et al (2005) Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry 162:1067–1075

    Article  PubMed  Google Scholar 

  126. Rodriguez PD, Baylis GC (2007) Activation of brain attention systems in individuals with symptoms of ADHD. Behav Neurol 18:115–130

    Article  PubMed  Google Scholar 

  127. Bush G, Frazier JA, Rauch SL et al (1999) Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting Stroop. Biol Psychiatry 45:1542–1552

    Article  CAS  PubMed  Google Scholar 

  128. Vaidya CJ, Bunge SA, Dudukovic NM et al (2005) Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imaging. Am J Psychiatry 162:1605–1613

    Article  PubMed Central  PubMed  Google Scholar 

  129. Bernal B, Altman N (2009) Neural networks of motor and cognitive inhibition are dissociated between brain hemispheres: an fMRI study. Int J Neurosci 119:1848–1880

    Article  PubMed  Google Scholar 

  130. Peterson BS, Skudlarski P, Gatenby JC et al (1999) An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biol Psychiatry 45:1237–1258

    Article  CAS  PubMed  Google Scholar 

  131. Solanto MV, Schulz KP, Fan J et al (2009) Event-related fMRI of inhibitory control in the predominantly inattentive and combined subtypes of ADHD. J Neuroimaging 19:205–212

    Article  PubMed Central  PubMed  Google Scholar 

  132. Rubia K, Halari R, Cubillo A et al (2009) Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 57:640–652

    Article  CAS  PubMed  Google Scholar 

  133. Kelly AM, Margulies DS, Castellanos FX (2007) Recent advances in structural and functional brain imaging studies of attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 9:401–407

    Article  PubMed  Google Scholar 

  134. Posner J, Park C, Wang Z (2014) Connecting the dots: a review of resting connectivity MRI studies in attention-deficit/hyperactivity disorder. Neuropsychol 24:3–15

    Google Scholar 

  135. Schneider G (1981) Early lesions and abnormal neuronal connections. Trends Neurosci 4:192

    Article  Google Scholar 

  136. Hebb D (1942) The effect of early and late brain injury upon test scores, and the nature of normal adult intelligence. Proc Am Philos Soc 85:275–292

    Google Scholar 

  137. Hertz-Pannier L (1999) Brain plasticity during development: physiological bases and functional MRI approach. J Neuroradiol 26:66–74

    Google Scholar 

  138. Hertz-Pannier L, Chiron C, Jambaqué I et al (2002) Late plasticity for language in a child’s non-dominant hemisphere: a pre- and post-surgery fMRI study. Brain J Neurol 125:361–372

    Article  Google Scholar 

  139. Staudt M, Grodd W, Gerloff C et al (2002) Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain 125:2222–2237

    Article  PubMed  Google Scholar 

  140. Anderson DP, Harvey AS, Saling MM et al (2006) FMRI lateralization of expressive language in children with cerebral lesions. Epilepsia 47:998–1008

    Article  PubMed  Google Scholar 

  141. Hadac J, Brozová K, Tintera J et al (2007) Language lateralization in children with pre-and postnatal epileptogenic lesions of the left hemisphere: an fMRI study. Epileptic Disord 9:19–27

  142. Guzzetta A, Pecini C, Biagi L et al (2008) Language organisation in left perinatal stroke. Neuropediatrics 39:157–163

    Article  CAS  PubMed  Google Scholar 

  143. Staudt M, Grodd W, Niemann G et al (2001) Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology 57:122–125

    Article  CAS  PubMed  Google Scholar 

  144. Epstein JN, Casey BJ, Tonev ST et al (2007) ADHD- and medication-related brain activation effects in concordantly affected parent–child dyads with ADHD. J Child Psychol Psychiatry 48:899–913

    Article  PubMed  Google Scholar 

  145. Arwert LI, Veltman DJ, Deijen JB et al (2006) Effects of growth hormone substitution therapy on cognitive functioning in growth hormone deficient patients: a functional MRI study. Neuroendocrinology 83:12–19

    Article  CAS  PubMed  Google Scholar 

  146. Chang K, Karchemskiy A, Kelley R et al (2009) Effect of divalproex on brain morphometry, chemistry, and function in youth at high-risk for bipolar disorder: a pilot study. J Child Adolesc Psychopharmacol 19:51–59

    Article  PubMed Central  PubMed  Google Scholar 

  147. Peterson B, Potenza M, Wang Z et al (2009) An fMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry 166:1286–1294

    Article  PubMed Central  PubMed  Google Scholar 

  148. McKeown MJ, Makeig S, Brown GG et al. (1998) Analysis of fMRI data by blind separation into independent spatial components. HYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed/9673671” \o “Human brain mapping.” Hum Brain Mapp 6:160–188

  149. Beckmann CF, DeLuca M, Devlin JT et al (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc B Biol Sci 360:1001–1013

    Article  Google Scholar 

  150. Fransson P, Skiöld B, Engström M et al (2009) Spontaneous brain activity in the newborn brain during natural sleep — an fMRI study in infants born at full term. Pediatr Res 66:301–305

    Article  PubMed  Google Scholar 

  151. Schöpf V, Kasprian G, Brugger PC et al (2012) Watching the fetal brain at ‘rest’. Int J Dev Neurosci 30:11–17

    Article  PubMed  Google Scholar 

  152. Redcay E, Kennedy DP, Courchesne E (2007) FMRI during natural sleep as a method to study brain function during early childhood. Neuroimage 38:696–707

    Article  PubMed  Google Scholar 

  153. Kiviniemi V, Jauhiainen J, Tervonen O et al (2000) Slow vasomotor fluctuation in fMRI of anesthetized child brain. Magn Reson Med 44:373–378

    Article  CAS  PubMed  Google Scholar 

  154. Kiviniemi V, Kantola JH, Jauhiainen J et al (2003) Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19:253–260

    Article  PubMed  Google Scholar 

  155. Harrison BJ, Pujol J, Lopez-Sola M et al (2008) Consistency and functional specialization in the default mode brain network. Proc Natl Acad Sci U S A 105:9781–9786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  156. Greicius M, Krasnow B, Reiss AL et al (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Vuontela V, Steenari MR, Aronen ET et al (2009) Brain activation and deactivation during location and color working memory tasks in 11–13-year-old children. Brain Cogn 69:56–64

    Article  PubMed  Google Scholar 

  158. Fox MD, Zhang D, Snyder AZ et al (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283

    Article  PubMed Central  PubMed  Google Scholar 

  159. Tian L, Jiang T, Wang Y et al (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400:39–43

    Article  CAS  PubMed  Google Scholar 

  160. Zang Y-F, He Y, Zhu C-Z et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29:83–91

    Article  PubMed  Google Scholar 

  161. Cao Q, Zang Y, Sun L et al (2006) Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 17:1033–1036

    Article  PubMed  Google Scholar 

  162. Fair DA, Cohen AL, Power JD et al (2009) Functional brain networks develop from a ‘local to distributed’ organization. PLoS Comput Biol 5:e1000381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  163. Lin W, Zhu Q, Gao W et al (2008) Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. AJNR Am J Neuroradiol 29:1883–1889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Cao X, Cao Q, Long X et al (2009) Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res 1303:195–206

    Article  CAS  PubMed  Google Scholar 

  165. Kennedy DP, Redcay E, Courchesne E (2006) Failing to deactivate: resting functional abnormalities in autism. Proc Natl Acad Sci U S A 103:8275–8280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Monk CS, Peltier SJ, Wiggins JL et al (2009) Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47:764–772

    Article  PubMed Central  PubMed  Google Scholar 

  167. Shimony JS, Zhang D, Johnston JM et al (2009) Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad Radiol 16:578–583

    Article  PubMed Central  PubMed  Google Scholar 

  168. (2014) ADHD-200 sample: normal controls. http://fcon_1000.projects.nitrc.org/indi/adhd200/. Accessed 01 Sept 2014

Download references

Conflicts of interest

The authors have no financial interests, investigational or off-label uses to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nolan R. Altman.

Additional information

This article is modified from Nolan R. Altman, Byron Bernal (2011) Pediatric Applications of fMRI. In: Faro SH, Mohamed FB, Law M, Ulmer JT (eds) Functional Neuroradiology, Springer Science+Business Media, New York, pp 545-573. © Springer Science+Business Media, LLC 2011. With kind permission of Springer Science+Business Media. All rights reserved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altman, N.R., Bernal, B. Pediatric applications of functional magnetic resonance imaging. Pediatr Radiol 45 (Suppl 3), 382–396 (2015). https://doi.org/10.1007/s00247-015-3365-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3365-1

Keywords

Navigation