Skip to main content

Advertisement

Log in

Childhood extracranial neoplasms: the role of imaging in drug development and clinical trials

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Cancer is the leading cause of death in children older than 1 year of age and new drugs are necessary to improve outcomes. Imaging is crucial to the drug development process and assessment of therapeutic response. In adults, tumours are often assessed with CT using size criteria. Unfortunately, techniques established in adults are not necessarily applicable in children due to differing pathophysiology, ability to cooperate and increased susceptibility to ionising radiation. MRI, in particular quantitative MRI, has to date not been fully utilised in children with extracranial neoplasms. The specific challenges of imaging in children, the potential for functional imaging techniques to inform upon and their inclusion in clinical trials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Health NCIatNIo (2012) Radiation risks and pediatric computed tomography: a guide for healthcare providers. http://www.cancer.gov/cancertopics/factsheet/Sites-Types/childhood. Accessed 01 Sept 2014

  2. Pritchard-Jones K, Pieters R, Reaman GH et al (2013) Sustaining innovation and improvement in the treatment of childhood cancer: lessons from high-income countries. Lancet Oncol 14:e95–e103

    Article  PubMed  Google Scholar 

  3. Ferlay J, Soerjomataram I, Ervik M et al (2013) GLOBOCAN 2012 v 1.0: Cancer incidence and mortality worldwide: IARC CancerBase No.11 (Internet). In: Lyon FIAfRoC (ed) Available from: http://globocaniarcfr. Accessed 07 Mar 2014

  4. Vanchieri C, Stith Butler A, Knutsen A (2006) Current challenges in developing and describing drugs for children. Addressing the barriers to paediatric drug development. National Academies Press, Washington DC, pp 20–28

  5. Rose K (2008) Ethical, regulatory and scientific challenges in paediatric drug development. Pharm Med 22:221–234

    Article  Google Scholar 

  6. Boklan J (2006) Little patients, losing patience: pediatric cancer drug development. Mol Cancer Ther 5:1905–1908

    Article  CAS  PubMed  Google Scholar 

  7. Parsons DW, Li M, Zhang X et al (2011) The genetic landscape of the childhood cancer medulloblastoma. Science 331:435–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brodeur GM, Bagatell R (2014) Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol 11:704–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jessy T (2011) Immunity over inability: the spontaneous regression of cancer. J Nat Sci Biol Med 2:43–49

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  11. Roebuck DJ, Aronson D, Clapuyt P et al (2007) 2005 PRETEXT: a revised staging system for primary malignant liver tumours of childhood developed by the SIOPEL group. Pediatr Radiol 37:123–132, quiz 249–150

    Article  PubMed  PubMed Central  Google Scholar 

  12. Olsen OE, Jeanes AC, Sebire NJ et al (2004) Changes in computed tomography features following preoperative chemotherapy for nephroblastoma: relation to histopathological classification. Eur Radiol 14:990–994

    Article  PubMed  Google Scholar 

  13. Michaelis LC, Ratain MJ (2006) Measuring response in a post-RECIST world: from black and white to shades of grey. Nat Rev Cancer 6:409–414

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki C, Torkzad MR, Jacobsson H et al (2010) Interobserver and intraobserver variability in the response evaluation of cancer therapy according to RECIST and WHO-criteria. Acta Oncol 49:509–514

    Article  PubMed  Google Scholar 

  15. Skougaard K, McCullagh MJ, Nielsen D et al (2012) Observer variability in a phase II trial - assessing consistency in RECIST application. Acta Oncol 51:774–780

    Article  PubMed  Google Scholar 

  16. Yang Z, Tang LH, Klimstra DS (2011) Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 35:853–860

    Article  PubMed  Google Scholar 

  17. Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    CAS  PubMed  Google Scholar 

  18. Castellano G, Bonilha L, Li LM et al (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069

    Article  CAS  PubMed  Google Scholar 

  19. Goh V, Ganeshan B, Nathan P et al (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261:165–171

    Article  PubMed  Google Scholar 

  20. Harrison LC, Luukkaala T, Pertovaara H et al (2009) Non-Hodgkin lymphoma response evaluation with MRI texture classification. J Exp Clin Cancer Res 28:87

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alic L, van Vliet M, van Dijke CF et al (2011) Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response? Phys Med Biol 56:1601–1616

    Article  CAS  PubMed  Google Scholar 

  22. O'Connor JP, Rose CJ, Jackson A et al (2011) DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer 105:139–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J Nucl Med 50:122S–150S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3068

    Article  PubMed  Google Scholar 

  25. Malayeri AA, El Khouli RH, Zaheer A et al (2011) Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 31:1773–1791

    Article  PubMed  Google Scholar 

  26. Wessely K, Biassoni L, McHugh K (2011) Pitfalls in paediatric oncology imaging. Cancer Imaging 11:144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. IRCP (1991) 1990 Recommendations of the International Commission on Radiological Protection. IRCP Publication 60. Pergamon Press, Oxford, UK

  28. Brenner DJ, Hall EJ (2007) Computed tomography–an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  29. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miglioretti DL, Johnson E, Williams A et al (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meadows AT, Friedman DL, Neglia JP et al (2009) Second neoplasms in survivors of childhood cancer: findings from the childhood cancer survivor study cohort. J Clin Oncol 27:2356–2362

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goske MJ, Applegate KE, Boylan J et al (2008) The image gently campaign: working together to change practice. AJR Am J Roentgenol 190:273–274

    Article  PubMed  Google Scholar 

  33. Radiology ESo (2015) Eurosafe: 27-month tender project PiDRL on the establishment of European DRLs for paediatric patients in December 2013 European Society of Radiology. http://www.eurosafeimaging.org/pidrl. Accessed 09 Jan 2015

  34. Paterson A, Frush DP (2007) Dose reduction in paediatric MDCT: general principles. Clini Radiol 62:507–517

    Article  CAS  Google Scholar 

  35. Alibek S, Brand M, Suess C et al (2011) Dose reduction in pediatric computed tomography with automated exposure control. Acad Radiol 18:690–693

    Article  PubMed  Google Scholar 

  36. Singh S, Kalra MK, Shenoy-Bhangle AS et al (2012) Radiation dose reduction with hybrid iterative reconstruction for pediatric CT. Radiology 263:537–546

    Article  PubMed  Google Scholar 

  37. Vorona GA, Ceschin RC, Clayton BL et al (2011) Reducing abdominal CT radiation dose with the adaptive statistical iterative reconstruction technique in children: a feasibility study. Pediatr Radiol 41:1174–1182

    Article  PubMed  Google Scholar 

  38. Hansen S (2009) Feed-and-sleep: a non-invasive and safe alternative to general anaesthesia when imaging very young children. The Radiographer 56:5–8. http://www.minnisjournals.com.au/articles/hansen.pdf. Accessed 09 Jan 2015

  39. Edwards AD, Arthurs OJ (2011) Paediatric MRI under sedation: is it necessary? What is the evidence for the alternatives? Pediatr Radiol 41:1353–1364

    Article  PubMed  Google Scholar 

  40. Wood ML, Runge VM, Henkelman RM (1988) Overcoming motion in abdominal MR imaging. AJR Am J Roentgenol 150:513–522

  41. Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719

  42. Haacke EM, Patrick JL (1986) Reducing motion artifacts in two-dimensional Fourier transform imaging. Magn Reson Imaging 4:359–376

  43. Vasanawala SS, Lustig M (2011) Advances in pediatric body MRI. Pediatr Radiol 41 Suppl 2:549–554

  44. Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user's guide. Radiographics 25:1279–1297

  45. Schindera ST, Merkle EM, Dale BM et al (2006) Abdominal magnetic resonance imaging at 3.0 T what is the ultimate gain in signal-to-noise ratio? Acad Radiol 13:1236–1243

  46. Lustig M, Donoho D Pauly JM (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195

  47. Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32:2–16

    Article  PubMed  PubMed Central  Google Scholar 

  48. Le Bihan D, Poupon C, Amadon A et al (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488

    Article  PubMed  Google Scholar 

  49. Koh DM, Blackledge M, Collins DJ et al (2009) Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol 19:2728–2738

    Article  PubMed  Google Scholar 

  50. Donati OF, Chong D, Nanz D et al (2014) Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 270:454–463

    Article  PubMed  Google Scholar 

  51. Malyarenko D, Galban CJ, Londy FJ et al (2013) Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J Magn Reson Imaging 37:1238–1246

    Article  PubMed  PubMed Central  Google Scholar 

  52. Andreou A, Koh DM, Collins DJ et al (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23:428–434

    Article  CAS  PubMed  Google Scholar 

  53. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361

    Article  PubMed  Google Scholar 

  54. Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  55. Koh DM, Takahara T, Imai Y et al (2007) Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 6:211-224

  56. Vermoolen MA, Kwee TC, Nievelstein RA (2012) Apparent diffusion coefficient measurements in the differentiation between benign and malignant lesions: a systematic review. Insights Imaging 3:395–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alibek S, Cavallaro A, Aplas A et al (2009) Diffusion weighted imaging of pediatric and adolescent malignancies with regard to detection and delineation: initial experience. Acad Radiol 16:866–871

    Article  PubMed  Google Scholar 

  58. Humphries PD, Sebire NJ, Siegel MJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 245:848–854

    Article  PubMed  Google Scholar 

  59. Kocaoglu M, Bulakbasi N, Sanal HT et al (2010) Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging 28:629–636

    Article  PubMed  Google Scholar 

  60. Cui Y, Zhang XP, Sun YS et al (2008) Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 248:894–900

    Article  PubMed  Google Scholar 

  61. Demir S, Altinkaya N, Kocer NE et al (2014) Variations in apparent diffusion coefficient values following chemotherapy in pediatric neuroblastoma. Diagn Interv Radiol. doi: 10.5152/dir.2014.14187

  62. Gururangan S, Fangusaro J, Young Poussaint T et al (2012) Lack of efficacy of Bevacizumab + irinotecan in cases of pediatric recurrent ependymoma–a pediatric brain tumor consortium study. Neuro Oncol 14:1404–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Koh DM, Scurr E, Collins DJ et al (2006) Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol 16:1898–1905

    Article  CAS  PubMed  Google Scholar 

  64. DeVries AF, Kremser C, Hein PA et al (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56:958–965

    Article  PubMed  Google Scholar 

  65. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koh DM, Blackledge M, Padhani AR et al (2012) Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol 199:252–262

    Article  PubMed  Google Scholar 

  67. Littooij AS, Kwee TC, Barber I et al (2014) Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol 24:1153–1165

    Article  PubMed  Google Scholar 

  68. Klenk C, Gawande R, Uslu L et al (2014) Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15:275–285

    Article  PubMed  Google Scholar 

  69. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206

    Article  PubMed  Google Scholar 

  70. Arthurs OJ, Gallagher FA (2011) Functional and molecular imaging with MRI: potential applications in paediatric radiology. Pediatr Radiol 41:185–198

    Article  PubMed  Google Scholar 

  71. Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    Article  CAS  PubMed  Google Scholar 

  72. Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  CAS  PubMed  Google Scholar 

  73. Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422

    Article  PubMed  Google Scholar 

  74. Leach MO, Brindle KM, Evelhoch JL et al (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murphy P, Koh DM (2010) Imaging in clinical trials. Cancer Imaging 10:S74–S82

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jordan BF, Runquist M, Raghunand et al (2005) Dynamic contrast-enhanced and diffusion MRI show rapid and dramatic changes in tumor microenvironment in response to inhibition of HIF-1 alpha using PX-478. Neoplasia 7: 475-485

  77. Vogel-Claussen J, Gimi B, Artemov D et al (2007) Diffusion weighted and macrovascular contrast-enhanced MRI of tumor response to antivascular therapy with ZD6126. Cancer Biol Ther 6: 1469–1475

  78. Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. Mag Reson Med 16: 407–422

  79. O'Connor JP, Jackson A, Parker GJ et al (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9:167–177

    Article  PubMed  CAS  Google Scholar 

  80. Essig M, Waschkies M, Wenz F et al (2003) Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology 228:193–199

    Article  PubMed  Google Scholar 

  81. Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fletcher BD, Hanna SL, Fairclough DL et al (1992) Pediatric musculoskeletal tumors: use of dynamic, contrast-enhanced MR imaging to monitor response to chemotherapy. Radiology 184:243–248

    Article  CAS  PubMed  Google Scholar 

  83. Guo J, Reddick WE, Glass JO et al (2012) Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer 118:3776–3785

    Article  PubMed  PubMed Central  Google Scholar 

  84. Glade Bender JL, Lee A, Reid JM et al (2013) Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a children's oncology group phase I consortium report. J Clin Oncol 31:3034–3043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ben Bashat D, Artzi M, Ben Ami H et al (2012) Hemodynamic response imaging: a potential tool for the assessment of angiogenesis in brain tumors. PLoS One 7:e49416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Padhani AR, Krohn KA, Lewis JS et al (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rijpkema M, Kaanders JH, Joosten FB et al (2002) Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging. Int J Radiat Oncol Biol Phys 53:1185–1191

    Article  PubMed  Google Scholar 

  88. Robinson SP, Kalber TL, Howe FA et al (2005) Acute tumor response to ZD6126 assessed by intrinsic susceptibility magnetic resonance imaging. Neoplasia 7:466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tong KA, Ashwal S, Obenaus A et al (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 29:9–17

    Article  CAS  PubMed  Google Scholar 

  90. Zhu Y-F (2014) Resting state functional magnetic resonance imaging study of jaundice infants before and after light treatment. ClinicalTrials.gov. Accessed 22 Jan 2015

  91. Taylor NJ, Baddeley H, Goodchild KA et al (2001) BOLD MRI of human tumor oxygenation during carbogen breathing. J Magn Reson Imaging 14:156–163

    Article  CAS  PubMed  Google Scholar 

  92. Pollock JM, Tan H, Kraft RA et al (2009) Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin North Am 17:315–338

    Article  Google Scholar 

  93. De Bazelaire C, Rofsky NM, Duhamel G et al (2005) Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1). Acad Radiol 12:347–357

    Article  PubMed  Google Scholar 

  94. Pedrosa I, Rafatzand K, Robson P et al (2012) Arterial spin labeling MR imaging for characterisation of renal masses in patients with impaired renal function: initial experience. Eur Radiol 22:484–492

    Article  PubMed  Google Scholar 

  95. Schraml C, Schwenzer NF, Martirosian P et al (2012) Non-invasive pulmonary perfusion assessment in young patients with cystic fibrosis using an arterial spin labeling MR technique at 1.5 T. Magma 25:155–162

    Article  PubMed  Google Scholar 

  96. Peng Q, Zhang Y, Nateras OS et al (2011) MRI of blood flow of the human retina. Magn Reson Med 65:1768–1775

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zun Z, Wong EC, Nayak KS (2009) Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): feasibility and noise analysis. Magn Reson Med 62:975–983

    Article  PubMed  Google Scholar 

  98. Frank LR, Wong EC, Haseler LJ et al (1999) Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling. Magn Reson Med 42:258–267

    Article  CAS  PubMed  Google Scholar 

  99. Tan H, Maldjian JA, Burdette JH et al. (2008) PASAL Filtering: A method of improving clinical perfusion imaging. ISMRM Meeting. Toronto, Canada

  100. Deibler AR, Pollock JM, Kraft RA et al (2008) Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 29:1228–1234

    Article  CAS  PubMed  Google Scholar 

  101. Glunde K, Ackerstaff E, Mori N et al (2006) Choline phospholipid metabolism in cancer: consequences for molecular pharmaceutical interventions. Mol Pharm 3:496–506

    Article  CAS  PubMed  Google Scholar 

  102. Koutcher JA, Ballon D, Graham M et al (1990) 31P NMR spectra of extremity sarcomas: diversity of metabolic profiles and changes in response to chemotherapy. Magn Reson Med 16; 19–34

  103. Maris JM, Evans AE, McLaughlin AC et al (1985) 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. N Engl J Med 312:1500–1505

    Article  CAS  PubMed  Google Scholar 

  104. Vaidya SJ, Payne GS, Leach MO et al (2003) Potential role of magnetic resonance spectroscopy in assessment of tumour response in childhood cancer. Eur J Cancer 39:728–735

    Article  CAS  PubMed  Google Scholar 

  105. Kwock L, Smith JK, Castillo M et al (2002) Clinical applications of proton MR spectroscopy in oncology. Technol Cancer Res Treat 1:17–28

    Article  CAS  PubMed  Google Scholar 

  106. Kurhanewicz J, Vigneron DB (2008) Advances in MR spectroscopy of the prostate. Magn Reson Imaging Clin North Am 16:697–710, ix-x

  107. Kurhanewicz J, Vigneron DB, Brindle K et al (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chekmenev EY (2013) MRI hyperpolarization and molecular imaging. http://interactive.snm.org/docs/MI_Gateway_Newsletter_2013-3.pdf"/>. Accessed 09 Jan 2015

  109. Golman K, Zandt RI, Lerche M et al (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860

    Article  CAS  PubMed  Google Scholar 

  110. Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med 5:198ra108

  111. Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387

    Article  CAS  PubMed  Google Scholar 

  112. Dorfman GS, Sullivan DC, Schnall MD et al (2008) The translational research working group developmental pathway for image-based assessment modalities. Clin Cancer Res 14:5678–5684

    Article  PubMed  Google Scholar 

  113. Muthupillai R, Ehman RL (1996) Magnetic resonance elastography. Nat Med 2:601–603

    Article  CAS  PubMed  Google Scholar 

  114. Serai SD, Towbin AJ, Podberesky DJ (2012) Pediatric liver MR elastography. Dig Dis Sci 57:2713–2719

    Article  PubMed  Google Scholar 

  115. Garteiser P, Doblas S, Daire JL et al (2012) MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur Radiol 22:2169–2177

    Article  PubMed  Google Scholar 

  116. Ben-Haim S, Ell P (2009) 18 F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 50:88–99

    Article  PubMed  Google Scholar 

  117. McCarville MB (2009) PET-CT imaging in pediatric oncology. Cancer Imaging 9:35–43

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560

    Article  CAS  PubMed  Google Scholar 

  119. Stauss J, Franzius C, Pfluger T et al (2008) Guidelines for 18 F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging 35:1581–1588

    Article  CAS  PubMed  Google Scholar 

  120. Riad R, Omar W, Kotb M et al (2010) Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging 37:319–329

    Article  PubMed  Google Scholar 

  121. Shammas A, Lim R, Charron M (2009) Pediatric FDG PET/CT: physiologic uptake, normal variants, and benign conditions. Radiographics 29:1467–1486

    Article  PubMed  Google Scholar 

  122. IAEA (2013) Radiation protection of patients: PET-CT scanning. IAEA, Vienna International Centre, Austria. https://rpop.iaea.org/RPOP/RPoP/Content/InformationFor/HealthProfessionals/6_OtherClinicalSpecialities/PETCTscan.htm#PETCT_FAQ01. Accessed 20 Jan 2015

  123. Chawla SC, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686

    Article  PubMed  PubMed Central  Google Scholar 

  124. Callahan J, Kron T, Schneider-Kolsky M et al (2011) The clinical significance and management of lesion motion due to respiration during PET/CT scanning. Cancer Imaging 11:224–236

    PubMed  PubMed Central  Google Scholar 

  125. Nehmeh SA, Erdi YE, Ling CC et al (2002) Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 29:366–371

    Article  CAS  PubMed  Google Scholar 

  126. Erdi YE, Nehmeh SA, Pan T et al (2004) The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 45:1287–1292

    PubMed  Google Scholar 

  127. Van Der Gucht A, Serrano B, Hugonnet F et al (2014) Impact of a new respiratory amplitude-based gating technique in evaluation of upper abdominal PET lesions. Eur J Radiol 83:509–515

    Article  Google Scholar 

  128. Federico SM, Spunt SL, Krasin MJ et al (2013) Comparison of PET-CT and conventional imaging in staging pediatric rhabdomyosarcoma. Pediatr Blood Cancer 60:1128–1134

    Article  PubMed  PubMed Central  Google Scholar 

  129. Moses WW (2011) Fundamental limits of spatial resolution in PET. Nulc Instrum Methods Phys Res A 648 Supplement 1:S236-S240

  130. Hirsch FW, Sattler B, Sorge I et al (2013) PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 43:860–875

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

National Institute for Health Research (NIHR) Biomedical Research Council (BRC) at The Royal Marsden NHS Foundation Trust and The Institute for Cancer Research, London, UK.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy A. Fowkes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fowkes, L.A., Koh, DM., Collins, D.J. et al. Childhood extracranial neoplasms: the role of imaging in drug development and clinical trials. Pediatr Radiol 45, 1600–1615 (2015). https://doi.org/10.1007/s00247-015-3342-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3342-8

Keywords

Navigation