Skip to main content
Log in

Trophic Transfer of Lead Through a Model Marine Four-Level Food Chain: Tetraselmis suecica, Artemia franciscana, Litopenaeus vannamei, and Haemulon scudderi

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The objective of this investigation was to assess the transfer of lead (Pb) along an experimental, four-level food chain: Tetraselmis suecica (phytoplankton) → Artemia franciscana (crustacean, brine shrimp) → Litopenaeus vannamei (crustacean, white shrimp) → Haemulon scudderi (fish, grunt). T. suecica was exposed to a sublethal dose of Pb in solution and then used as the base of a marine food chain. Significant differences in Pb concentrations were found between exposed organisms of the different trophic levels and the control. Particularly, Pb concentrations in fish of the simulated trophic chain were two-to three times higher in the exposed specimens than in the control. Levels of Pb in phytoplankton showed a substantial increase with respect to the solution (level I), with bioconcentration factors averaging from 930 to 3630. In contrast, a strong decrease in Pb concentration from phytoplankton to zooplankton (level II) and from zooplankton to shrimp tissues (level III) was evidenced by bioaccumulation factors <1. Despite the decrease in the assimilation efficiency of metal transfer observed in these two predators, Pb concentration in the grunt fish (level IV) was higher than in the shrimp (level III) (bioaccumulation factor >1.0). Some of the added Pb is transferred from the phytoplankton along the food chain, thus producing a net accumulation of Pb mainly in fish and, to a lesser extent, in shrimp tissues. Because Pb is one of the most pervasive contaminants in coastal ecosystems, its transference by way of diet and potential net accumulation in higher predators is of ecologic importance for marine life. In addition, because shrimp and adult Haemulon scudderi are commercially important resources, this issue is of particular relevance to the safety of marine products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd-allah AT, Moustafa MA (2002) Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis, chemical analysis, light and electron microscopy. Environ Pollut 116(2):185–191

    Article  CAS  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (1999) Toxicological profile for lead. United States Department of Health and Human Services, Atlanta, GA July

    Google Scholar 

  • Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B 174:439–452

    Article  CAS  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Metayer C, Marchand J, Ferre R (1980) Study on the transfer of Cd, Pb, Cu and Zn in neritic and estuarine trophic chains. I. The inner estuary of the Loire (France) in the summer of 1978. Water Res 14:665–673

    Article  CAS  Google Scholar 

  • Amiard-Triquet C, Jeantet AY, Berthet B (1993) Metal transfer in marine food chains: bioaccumulation and toxicity. Acta Biol Hung 44:387–409

    CAS  Google Scholar 

  • Barwick M, Maher W (2003) Biotransference and biomagnification of selenium, copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res 56:471–502

    Article  CAS  Google Scholar 

  • Besser JM, Canfield TJ, La Point TW (1993) Bioaccumulation of organic and inorganic selenium in a laboratory food chain. Environ Toxicol Chem 12:57–72

    Article  CAS  Google Scholar 

  • Bryan GW (1979) Bioaccumulation of marine pollutants. Phil Trans R Soc London B 286:483–1168

    Article  CAS  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76(2):89–131

    Article  CAS  Google Scholar 

  • Canli M, Atli G (2003) The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121(1):129–136

    Article  CAS  Google Scholar 

  • Chini-Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943

    Article  Google Scholar 

  • Cuong DT, Karuppiah S, Obbard JP (2008) Distribution of heavy metals in the dissolved and suspended phase of the sea-surface microlayer, seawater column and in sediments of Singapore’s coastal environment. Environ Monit Assess 138:255–272

    Article  CAS  Google Scholar 

  • De Forest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84:236–246

    Article  Google Scholar 

  • Dietz R, Riget M, Cleemann A, Aarkrog P, Hanse JC (2000) Comparison of contaminants from different trophic levels and ecosystems. Sci Total Environ 245:221–231

    Article  CAS  Google Scholar 

  • El-Moselhy KHM, Gabal MN (2004) Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez. Red Sea J Mar Sys 46:39–46

    Google Scholar 

  • Environmental Protection Agency (2006) National recommended water quality criteria. Available at: http://www.epa.gov/waterscience/criteria/wqctable/. Accessed May 2010

  • Evans DW, Kathman RD, Walk WW (2000) Trophic accumulation and depuration of mercury by blue crabs (Callinectes sapidus) and pink shrimp (Penaeus duorarum). Mar Environ Res 49:419–434

    Article  CAS  Google Scholar 

  • Fisher NS, Reinfelder JR (1995) The trophic transfer of metals in marine systems. In: Turner DR, Tessier A (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, UK, pp 363–406

    Google Scholar 

  • Fisher NS, Stupakoff I, Sanudo-Wilhelmy SA, Wang WX, Teyssie JL, Fowler SW et al (2000) Trace metals in marine copepods: a field test of a bioaccumulation model coupled to laboratory uptake kinetics data. Mar Ecol Prog Ser 194:211–218

    Article  CAS  Google Scholar 

  • Food and Agriculture/World Health Organization (1972) Evaluation of certain food additives and the contaminants mercury, cadmium and lead. FAO/WHO Technical Report Series No. 505, Geneva, Switzerland

  • Fowler SW (1977) Trace elements in zooplankton products. Nature 269:51–53

    Article  CAS  Google Scholar 

  • Fowler SW (1982) Biological transfer and transport processes. In: Kullenberg G (ed) Pollutant transfer and transport in the sea, vol 2. CRC Press, Boca Raton, FL, pp 1–65

    Google Scholar 

  • Gobas FAPC, Morrison HA (2000) Bioconcentration and biomagnifications in the aquatic environment. In: Boethling RS, Mackay D (eds) Handbook of property estimation methods for chemicals. Lewis, Boca Raton, FL, pp 189–231

    Google Scholar 

  • Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Poll Bull 45:46–52

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervace (Cleve). Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Hansen JA, Lipton J, Welsh PG, Cacela D, MacConnell B (2004) Reduced growth of rainbow trout (Oncorhynchus mykiss) fed a live invertebrate diet pre-exposed to metal-contaminated sediments. Environ Toxicol Chem 23(8):1902–1911

    Article  CAS  Google Scholar 

  • Lankford RR (1977) Estuarine process, coastal lagoons of México: their origin and classification. In: Wiley ML (ed) Estuarine Research Federation, Galveston, Texas. Academic, New York, NY, pp 182–215

  • Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 387:141–154

    Article  CAS  Google Scholar 

  • Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH et al (2008) Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquat Toxicol 89:82–93

    Article  CAS  Google Scholar 

  • Luoma SN (1996) The developing framework of marine ecotoxicology: pollutants as a variable in marine ecosystems? J Exp Mar Biol Ecol 200(1–2):29–55

    Article  CAS  Google Scholar 

  • Martin JH, Knauer GA (1973) The elemental composition of plankton. Geochim Cosmochim Acta 37:1639–1653

    Article  CAS  Google Scholar 

  • Mathews T, Fisher NS (2008) Trophic transfer of seven trace metals in a four step marine food chain. Mar Ecol Prog Ser 367:23–33

    Article  CAS  Google Scholar 

  • Michels A, Flegal AR (1990) Lead in marine planktonic organisms and pelagic food webs. Limnol Oceanogr 35(2):287–295

    Article  Google Scholar 

  • Nott JA (1998) Metals and marine food chains. In: Bebianno MJ, Langston WL (eds) Metal metabolism in aquatic environments. Chapman and Hall, London, UK, pp 387–414

    Google Scholar 

  • Nussey G, Van Vuren JHJ, Du Preez HH (2000) Bioaccumulation of chromium, manganese, nickel and lead in the tissues of the moggel, Labeo umbratus (Cyprinidae), from Witbank Dam, Mpumalanga. Water SA 26:269–284

    CAS  Google Scholar 

  • Osuna-López JI, Páez-Osuna F, Marmolejo-Rivas C, Ortega-Romero P (1989) Metales pesados disueltos y particulados en el Puerto de Mazatlán. Anales del ICMyL, UNAM 16(2):307–320

  • Patterson CC, Settle D (1977) Comparative distribution of alkalies, alkaline earths and lead among major tissues of the tuna Thunnus alalunga. Mar Biol 39:289–295

    Article  Google Scholar 

  • Pérez-Rama M, Alonso JA, Lopez CH, Vaamonde ET (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresource Technol 84(3):265–270

    Article  Google Scholar 

  • Rainbow PS (1997) Ecophysiology of trace metal uptake in crustaceans. Est Coast Shelf Sci 44(2):169–175

    Article  CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  • Rainbow PS, Poirier L, Smith BD, Brix KV, Luoma SN (2006) Trophic transfer of trace metals from the polychaete worm Nereis diversicolor to the polychaete N. virens and the decapod crustacean Palaemonetes varians. Mar Ecol Prog Ser 321:167–181

    Article  CAS  Google Scholar 

  • Roach AC, Maher W, Krikowa F (2008) Assessment of metals in fish from Lake Macquarie, New South Wales, Australia. Arch Environ Contam Toxicol 54:292–308

    Article  CAS  Google Scholar 

  • Roesijadi G (1992) Metallothionein in metal regulation and toxicity in aquatic animals. Review. Aquat Toxicol 22(2):81–113

  • Ruelas-Inzunza J, Páez-Osuna F (2008) Trophic distribution of Cd, Pb, and Zn in a food web from Altata-Ensenada del Pabellón subtropical lagoon, SE Gulf of California. Arch Environ Contam Toxicol 54:584–596

    Article  CAS  Google Scholar 

  • Sadiq M (1992) Toxic metal chemistry in marine environments. Dekker, New York, NY

    Google Scholar 

  • Schlekat CE, Lee BG, Luoma SN (2002) Dietary metals exposure and toxicity to aquatic organisms: implications for ecological risk assessment. In: Newman MC, Roberts MH Jr, Hale RC (eds) Coastal and estuarine risk assessment. Lewis, Boca Raton, FL, pp 151–188

    Google Scholar 

  • Schmitt CJ, Finger SE (1987) The effects of sample preparation on measured concentrations of eight elements in edible tissues of fish from streams contaminated by lead mining. Arch Environ Contam Toxicol 16:185–207

    Article  CAS  Google Scholar 

  • Secretaría de Salud (1995) Productos de la pesca: Secos-salados, ahumados, moluscos cefalópodos y gasterópodos frescos-refrigerados y congelados. Disposiciones y especificaciones sanitarias [in Spanish]. NOM-129-SSA1-1995, Mexico, DF

  • Sokal RR, Rohlf FJ (2003) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York, NY

    Google Scholar 

  • Sorenson E (1991) Metal poisoning in fish. CRC Press, Boca Raton, FL

    Google Scholar 

  • Soto-Jiménez MF, Flegal AR (2009) Origin of lead in the Gulf of California ecoregion using stable isotope analysis. J Geochem Explor 101:66–74

    Article  Google Scholar 

  • Soto-Jiménez MF, Páez-Osuna F, Scelfo G, Hibdon S, Franks R, Aggarawl J et al (2008) Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: a study of concentrations and isotopic composition. Mar Environ Res 66:451–458

    Article  Google Scholar 

  • Szefer P (1991) Interphase and trophic relationships of metals in a southern Baltic ecosystem. Sci Total Environ 101:201–215

    Article  CAS  Google Scholar 

  • Szefer P (1998) Distribution and behaviour of selected heavy metals and other elements in various components of the southern Baltic ecosystem. Appl Geochem 13(3):287–292

    Article  CAS  Google Scholar 

  • United States Food Drug Administration (1993) Guidance document for lead in shellfish. United States Department of Health and Human Services, Public Health Service, Office of Seafood, Washington, DC

    Google Scholar 

  • Usero J, Izquierdo C, Morillo J, Gracia I (2003) Heavy metals in fish (Solea vulgaris, Anguilla anguilla and Liza aurata) from salt marshes on the southern Atlantic coast of Spain. Environ Int 29:949–956

    Article  Google Scholar 

  • Van Hattum B, Timmermans KR, Govers HA (1991) Abiotic and biotic factors influencing in situ trace metal levels in macroinvertebrates in freshwater ecosystems. Environ Toxicol Chem 10:275–292

    Article  Google Scholar 

  • Wang WX (2002) Interactions of trace metals and different marine food chains. Mar Ecol Prog Ser 243:295–309

    Article  CAS  Google Scholar 

  • Wang WX, Ke CH (2002) Dominance of dietary intake of cadmium and zinc by two marine predatory gastropods. Aquat Toxicol 56:153–165

    Article  CAS  Google Scholar 

  • Wang WX, Fisher NS, Luoma SN (1996) Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar Ecol Prog Ser 140:91–113

    Article  CAS  Google Scholar 

  • Watanabe K, Monaghan MT, Takemon Y, Omura T (2008) Biodilution of heavy metals in a stream macroinvertebrate food web: evidence from stable isotope analysis. Sci Total Environ 394:57–67

    Article  CAS  Google Scholar 

  • Zhang L, Wang WX (2006) Significance of subcellular metal distribution in prey in influencing the trophic transfer of metals in a marine fish. Limnol Oceanogr 51(5):2008–2017

    Article  CAS  Google Scholar 

  • Zhang L, Wang WX (2007) Size-dependence of the potential for metal biomagnification in early life stages of marine fish. Environ Toxicol Chem 26(4):787–794

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank J. F. Ontiveros-Cuadras, A. Nuñez-Pastén, and S. Rendón-Rodríguez for help in bioassays; H. Bojórquez-Leyva for laboratory analysis; and V. Montes, C. Ramírez-Jáuregui, C. Suárez-Gutiérrez, and G. Ramírez-Reséndiz for manuscript preparation. Special thanks to personal of Mazatlán Aquarium for their support. We are grateful to two anonymous reviewers for the truly helpful comments. Financial support was provided by the grant SEP-CONACYT 60215, UNAM-PAPIIT IN206409, IN210609, and IN217408-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Soto-Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto-Jiménez, M.F., Arellano-Fiore, C., Rocha-Velarde, R. et al. Trophic Transfer of Lead Through a Model Marine Four-Level Food Chain: Tetraselmis suecica, Artemia franciscana, Litopenaeus vannamei, and Haemulon scudderi . Arch Environ Contam Toxicol 61, 280–291 (2011). https://doi.org/10.1007/s00244-010-9620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-010-9620-4

Keywords

Navigation