Skip to main content

Advertisement

Log in

Association between vitamin D receptor gene polymorphisms and idiopathic hypocitraturia in a Chinese Bai population

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Idiopathic hypocitraturia (IH) is a risk factor for urolithiasis. IH is associated with vitamin D receptor (VDR) gene single nucleotide polymorphisms (SNPs) in a Chinese Han population. However, this association between VDR SNPs and IH has not been recapitulated in a Chinese Bai population. The aim of this study is to investigate the association between VDR SNPs and IH in a Chinese Bai population. A total of 320 participants comprising of 200 Chinese Bai patients with IH and 120 Chinese Bai control participants with normal urinary citrate level were enrolled for this study. The VDR SNPs rs7975232, rs2228570, rs731236 and rs1544410 were detected by Sanger sequencing, and the association between these SNPs and the presence of IH in the Chinese Bai population was analyzed. The prevalence of VDR SNPs rs7975232 allele A and rs2228570 genotype TT was significantly higher in patients than in controls (p < 0.0125, after Bonferroni correction). The haplotype TCGC was a protective factor in the Chinese Bai population who otherwise might suffer from IH, while the haplotype TTGA was a risk factor. VDR SNPs rs731236 and rs1544410 have a linkage disequilibrium value of 0.811. VDR SNPs rs7975232, rs2228570, and haplotypes TCGC, TTGA are associated with IH in a Chinese Bai population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Theka T, Rodgers AL, Webber D et al (2014) Variability in kidney stone incidence between black and white South Africans: AGT Pro11Leu polymorphism is not a factor. J Endourol 28(5):577–581

    Article  PubMed  Google Scholar 

  2. Turney BW, Appleby PN, Reynard JM et al (2014) Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol 29(5):363–369

    Article  CAS  PubMed  Google Scholar 

  3. Bae SR, Seong JM, Kim LY et al (2014) The epidemiology of reno-ureteral stone disease in Koreans: a nationwide population-based study. Urolithiasis 42(2):109–114

    Article  PubMed  Google Scholar 

  4. Jiang D, Geng H (2017) Primary hyperoxaluria. N Engl J Med 376(15):e33

    Article  PubMed  Google Scholar 

  5. Arrabal-Polo MA, Arias-Santiago S, Giron-Prieto MS et al (2012) Hypercalciuria, hyperoxaluria, and hypocitraturia screening from random urine samples in patients with calcium lithiasis. Urol Res 40(5):511–515

    Article  CAS  PubMed  Google Scholar 

  6. Rez P (2017) What does the crystallography of stones tell us about their formation? Urolithiasis 45(1):11–16

    Article  CAS  PubMed  Google Scholar 

  7. Rendina D, De Filippo G, Gianfrancesco F et al (2017) Evidence for epistatic interaction between VDR and SLC13A2 genes in the pathogenesis of hypocitraturia in recurrent calcium oxalate stone formers. J Nephrol 30(3):411–418

    Article  CAS  PubMed  Google Scholar 

  8. Haymann JP (2015) Metabolic disorders: stones as first clinical manifestation of significant diseases. World J Urol 33(2):187–192

    Article  CAS  PubMed  Google Scholar 

  9. Letendre J, Cloutier J, Villa L et al (2015) Metabolic evaluation of urinary lithiasis: what urologists should know and do. World J Urol 33(2):171–178

    Article  CAS  PubMed  Google Scholar 

  10. Kan WC, Chou YH, Chiu SJ et al (2014) Study of the association between ITPKC genetic polymorphisms and calcium nephrolithiasis. Biomed Res Int 2014:397826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Skolarikos A, Straub M, Knoll T et al (2015) Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol 67(4):750–763

    Article  PubMed  Google Scholar 

  12. Arrabal-Martin M, Poyatos-Andujar A, Cano-Garcia Mdel C et al (2015) The importance of calciuria as lithogenic factors in patients with osteopenia/osteoporosis. Int Urol Nephrol 47(3):445–449

    Article  CAS  PubMed  Google Scholar 

  13. Rungroj N, Nettuwakul C, Sudtachat N et al (2014) A whole genome SNP genotyping by DNA microarray and candidate gene association study for kidney stone disease. BMC Med Genet 15:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vezzoli G, Terranegra A, Rainone F et al (2011) Calcium-sensing receptor and calcium kidney stones. J Transl Med 9:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bid HK, Chaudhary H, Mittal RD (2005) Association of vitamin-D and calcitonin receptor gene polymorphism in paediatric nephrolithiasis. Pediatr Nephrol 20(6):773–776

    Article  PubMed  Google Scholar 

  16. Basiri A, Shakhssalim N, Houshmand M et al (2012) Coding region analysis of vitamin D receptor gene and its association with active calcium stone disease. Urol Res 40(1):35–40

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira LG, Pereira AC, Heilberg IP (2010) Vitamin D receptor and calcium-sensing receptor gene polymorphisms in hypercalciuric stone-forming patients. Nephron Clin Pract 114(2):c135–c144

    Article  CAS  Google Scholar 

  18. Zuckerman JM, Assimos DG (2009) Hypocitraturia: pathophysiology and medical management. Rev Urol 11(3):134–144

    PubMed  PubMed Central  Google Scholar 

  19. Mossetti G, Vuotto P, Rendina D et al (2003) Association between vitamin D receptor gene polymorphisms and tubular citrate handling in calcium nephrolithiasis. J Intern Med 253(2):194–200

    Article  CAS  PubMed  Google Scholar 

  20. Zhu C, Ye Z, Chen Z et al (2010) Association between vitamin D receptor gene polymorphisms and idiopathic hypocitraturia in the Chinese population. Urol Int 85(1):100–105

    Article  CAS  PubMed  Google Scholar 

  21. Alatab S, Pourmand G, El Howairis Mel F et al (2016) National profiles of urinary calculi: a comparison between developing and developed worlds. Iran J Kidney Dis 10(2):51–61

    PubMed  Google Scholar 

  22. Zeng G, Mai Z, Xia S et al (2017) Prevalence of kidney stones in China: an ultrasonography based cross-sectional study. BJU Int 120(1):109–116

    Article  PubMed  Google Scholar 

  23. Wu W, Yang D, Tiselius HG et al (2014) The characteristics of the stone and urine composition in Chinese stone formers: primary report of a single-center results. Urology 83(4):732–737

    Article  PubMed  Google Scholar 

  24. Lieske JC, Turner ST, Edeh SN et al (2014) Heritability of urinary traits that contribute to nephrolithiasis. Clin J Am Soc Nephrol 9(5):943–950

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ferraro PM, Robertson WG, Johri N et al (2015) A London experience 1995–2012: demographic, dietary and biochemical characteristics of a large adult cohort of patients with renal stone disease. QJM J Med 108(7):561–568

    Article  CAS  Google Scholar 

  26. Rull MO, Ochoa-Hortal MA, Cano-Garcia MC, Martin MA et al (2015) Calcium and phosphorus metabolism and lithogenic factors in patients with osteoporotic fracture. Actas Urol Esp 39(5):279–282

    Article  Google Scholar 

  27. Uitterlinden AG, Fang Y, van Meurs JBJ et al (2004) Genetics and biology of vitamin D receptor polymorphisms. Gene 338:143–156

    Article  CAS  PubMed  Google Scholar 

  28. Mostowska A, Lianeri M, Wudarski M et al (2013) Vitamin D receptor gene BsmI, FokI, ApaI and TaqI polymorphisms and the risk of systemic lupus erythematosus. Mol Biol Rep 40(2):803–810

    Article  CAS  PubMed  Google Scholar 

  29. Zhan Y, Liu M, You Y et al (2015) Genetic variations in the vitamin-D receptor (VDR) gene in preeclampsia patients in the Chinese Han population. Hypertens Res 38(7):513–517

    Article  CAS  PubMed  Google Scholar 

  30. Carvalho AY, Bishop KS, Han DY et al (2013) The role of Vitamin D level and related single nucleotide polymorphisms in Crohn’s disease. Nutrients 5(10):3898–3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferrarezi DA, Bellili-Munoz N, Nicolau C et al (2012) Allelic variations in the vitamin D receptor gene, insulin secretion and parents’ heights are independently associated with height in obese children and adolescents. Metabolism 61(10):1413–1421

    Article  CAS  PubMed  Google Scholar 

  32. Al-Daghri NM, Al-Attas OS, Alkharfy KM et al (2014) Association of VDR-gene variants with factors related to the metabolic syndrome, type 2 diabetes and vitamin D deficiency. Gene 542(2):129–133

    Article  CAS  PubMed  Google Scholar 

  33. Mao S, Huang S (2014) Vitamin D receptor gene polymorphisms and the risk of rickets among Asians: a meta-analysis. Arch Dis Child 99(3):232–238

    Article  PubMed  Google Scholar 

  34. Bermúdez-Morales VH, Fierros G, Lopez RL et al (2017) Vitamin D receptor gene polymorphisms are associated with multiple sclerosis in Mexican adults. J Neuroimmunol 306:20–24

    Article  PubMed  CAS  Google Scholar 

  35. Shahbazi S, Alavi S, Majidzadeh AK et al (2013) BsmI but not FokI polymorphism of VDR gene is contributed in breast cancer. Med Oncol 30(1):393

    Article  PubMed  CAS  Google Scholar 

  36. Liu S, Cai H, Cheng W et al (2017) Association of VDR polymorphisms (Taq I and Bsm I) with prostate cancer: a new meta-analysis. J Int Med Res 45(1):3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bai YH, Lu H, Hong D et al (2012) Vitamin D receptor gene polymorphisms and colorectal cancer risk: a systematic meta-analysis. World J Gastroenterol 18(4):1672–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amaro CR, Goldberg J, Damasio PC et al (2015) An update on metabolic assessment in patients with urinary lithiasis. World J Urol 33(1):125–129

    Article  CAS  PubMed  Google Scholar 

  39. Domrongkitchaiporn S, Ongphiphadhanakul B, Stitchantrakul W et al (2000) Risk of calcium oxalate nephrolithiasis after calcium or combined calcium and calcitriol supplementation in postmenopausal women. Osteoporos Int 11(6):486–492

    Article  CAS  PubMed  Google Scholar 

  40. Pajor AM (2014) Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch 466(1):119–130

    Article  CAS  PubMed  Google Scholar 

  41. Ohana E, Shcheynikov N, Moe OW et al (2013) SLC26A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J Am Soc Nephrol 24(10):1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hering-Smith KS, Schiro FR, Pajor AM et al (2011) Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells. Am J Physiol Renal Physiol 300(2):F425–F432

    Article  CAS  Google Scholar 

  43. Medina-Escobedo M, Gonzalez-Herrera L, Villanueva-Jorge S et al (2014) Metabolic abnormalities and polymorphisms of the vitamin D receptor (VDR) and ZNF365 genes in children with urolithiasis. Urolithiasis 42(5):395–400

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (Grant number 81460141), by Science and Technology Department of Yunnan Province Uniting Kunming Medical University Specialized Foundation (Grant number 2013FB134, 2017FE468(-029) and 2017FE467(-042)), by Doctoral Scientific Research Fund of the First Affiliated Hospital of Kunming Medical University (Grant number 2015BS026 and 2017BS016) and by the scientific research funding of Yunnan Provincial Department of Education (Grant number 2018JS208).

Author information

Authors and Affiliations

Authors

Contributions

KL and YL contributed equally to the paper.

Corresponding authors

Correspondence to Yin Mo or Hao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consents

Informed consent forms were signed by all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Luo, Y., Mo, Y. et al. Association between vitamin D receptor gene polymorphisms and idiopathic hypocitraturia in a Chinese Bai population. Urolithiasis 47, 235–242 (2019). https://doi.org/10.1007/s00240-018-1069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-018-1069-3

Keywords

Navigation