Skip to main content
Log in

Inferring the Evolutionary History of Mo-Dependent Nitrogen Fixation from Phylogenetic Studies of nifK and nifDK

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The ability to fix nitrogen is widely, but sporadically distributed among the Bacteria and Archaea suggesting either a vertically inherited, ancient function with widespread loss across genera or an adaptive feature transferred laterally between co-inhabitants of nitrogen-poor environments. As previous phylogenetic studies of nifH and nifD have not completely resolved the evolutionary history of nitrogenase, sixty nifD, nifK, and combined nifDK genes were analyzed using Bayesian, maximum likelihood, and parsimony algorithms to determine whether the individual and combined datasets could provide additional information. The results show congruence between the 16S and nifDK phylogenies at the phyla level and generally support vertical descent with loss. However, statistically significant differences between tree topographies suggest a complex evolutionary history with the underlying pattern of vertical descent obscured by recurring lateral transfer events and different patterns of evolution between the genes. Results support inheritance from the Last Common ancestor or an ancient lateral transfer of the nif genes between Bacteria and Archaea, ongoing gene transfer between cohabitants of similar biogeographic regions, acquisition of nitrogen-fixing capability via symbiosis islands, possible xenologous displacement of one gene in the operon, and possible retention of ancestral genes in heterocystous cyanobacteria. Analyses support the monophyly of the Cyanobacteria, αβγ-Proteobacteria, and Actinobacteria (Frankia) and provide strong support for the placement of Frankia nif genes at the base of combined the Cyanobacteria/Proteobacteria clades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DG (2000) Heterocyst formation in cyanobacteria. Curr Opin Microbiol 3:618–624

    Article  CAS  PubMed  Google Scholar 

  • Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, Nandakumar R, Gross R, Rosinus A, Keller H et al (2003) Complete genome sequence and analysis of Wolinella succinogenes. PNAS 100:11690–11695

    Article  CAS  PubMed  Google Scholar 

  • Bergman B, Rasmussen U, Rai AN (2007) Cyanobacterial associations. In: Newton WE, Elmerich C (eds) Associative and endophytic nitrogen-fixing bacteria and Cyanobacterial associations. Kluwer Academic, Dordrecht, pp 257–301

    Chapter  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Lemmon AR (2007) The importance of data partitioning and the utility of bayes factors in bayesian phylogenetics. Syst Biol 56:643–655

    Article  PubMed  Google Scholar 

  • Cantera JJL, Kawasaki H, Seki T (2004) The nitrogen-fixing gene (nifH) of Rhodopseudomonas palustris: a case of lateral gene transfer? Microbiology 150:2237–2246

    Article  CAS  PubMed  Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria, oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, Second edn. Springer, New York, pp 473–599

    Google Scholar 

  • Chen W-M, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  CAS  PubMed  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 793–834

    Google Scholar 

  • Dedysh SN, Ricke P, Liesack W (2004) NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150:1301–1313

    Article  CAS  PubMed  Google Scholar 

  • Enkh-Amgalan J, Kawasaki H, Seki T (2005) NifH and NifD sequences of Heliobacteria: a new lineage in the nitrogenase phylogeny. FEMS Lett 243:73–79

    Article  CAS  Google Scholar 

  • Enkh-Amgalan J, Kawasaki H, Seki T (2006) Molecular evolution of the nif gene cluster carrying nifI 1 and nifI 2 genes in the gram-positive phototrophic bacterium Heliobacterium chlorum. Int J Syst Evol Micro 56:65–74

    Article  CAS  Google Scholar 

  • Fani R, Gallo R, Liò P (2000) Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51:1–11

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Garrity GM, Holt JG (2001) Phylum BXIII firmicutes. In: Boone DR, Castenholzb RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 625–630

    Google Scholar 

  • Haselkorn R, Buikema WJ (1992) Nitrogen fixation in cyanobacteria. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 166–190

    Google Scholar 

  • Hennecke H, Kaluza K, Thöny M, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348

    Article  CAS  Google Scholar 

  • Henson BJ, Watson LE, Barnum SR (2002) Molecular differentiation of the heterocystous cyanobacteria, Nostoc and Anabaena, based on complete NifD sequences. Curr Microbiol 45:161–164

    Article  CAS  PubMed  Google Scholar 

  • Henson BJ, Hesselbrock SM, Watson LE, Barnum SR (2004a) Molecular phylogeny of the heterocystous cyanobacteria (Subsections IV and V) based on nifD. Int J Syst Evol Microbiol 54:493–497

    Article  CAS  PubMed  Google Scholar 

  • Henson BJ, Watson LE, Barnum SR (2004b) The evolutionary history of nitrogen fixation, as assessed by NifD. J Mol Evol 58:390–399

    Article  CAS  PubMed  Google Scholar 

  • Hirsch AM, McKhann HI, Reddy A, Liao J, Fang Y, Marshall CR (1995) Assessing horizontal transfer of nifHDK genes in eubacteria: nucleotide sequence of nifK from Frankia strain HFPCc13. Mol Biol Evol 12:16–27

    CAS  PubMed  Google Scholar 

  • Holmes DE, Nevin KP, Lovley DR (2004) Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Egener T, Reinhold-Hurek B (1997) Divergence in nitrogenases of Azoarcus spp., Proteobacteria of the β subclass. J Bacteriol 179:4172–4178

    CAS  PubMed  Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2002) rDNA analyses of planktonic heterocystous cyanobacteria including members of the genera Anabaenopsis and Cyanospira. Microbiology 148:481–496

    CAS  PubMed  Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806

    Article  CAS  PubMed  Google Scholar 

  • Jobb GA, vonHaeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:I8

    Article  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic Bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Kneip C, Vob C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicelluar algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8(30):1–16

    Google Scholar 

  • Ludwig W, Klenk H-P (2001) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systematics. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer-Verlag, New York, pp 49–65

    Google Scholar 

  • Morrison DA, Ellis JT (1997) Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of Apicomplexa. Mol Biol Evol 14:428–441

    CAS  PubMed  Google Scholar 

  • Navarro-González R, McKay CP, Mvondo DN (2001) A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightening. Nature 412:61–64

    Article  PubMed  Google Scholar 

  • Newton WE (1997) Molybdenum-nitrogenase: structure and function. In: Legocki H, Bothe E, Pühler A (eds) Biological nitrogen for ecology and sustainable agriculture, Springer-Verlag, Berlin, pp 9–12

  • Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol 29:436–447

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Gouy M, Cournoyer B, Simonet P (1992) Nucleotide sequence of nifD from Frankia alni strain Arl3: phylogenic inferences. Mol Biol Evol 9:495–506

    CAS  PubMed  Google Scholar 

  • Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  • Omelchenko MV, Makarova KS, Wolf YI, Rogozin IB, Koonin EV (2003) Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 4:R55

    Article  PubMed  Google Scholar 

  • Parker MA, Lafay B, Burdon JJ, van Berkum P (2002) Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. Microbiology 148:2557–2565

    CAS  PubMed  Google Scholar 

  • Posada D (2006) ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34:W700–W703

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Systems Biol 50:580–601

    Article  CAS  Google Scholar 

  • Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, New York

    Google Scholar 

  • Postgate JR (1992) The Leeuwenhoek lecture, 1992 Bacterial evolution and the nitrogen-fixing plant. Philos Trans R Soc B 338:409–416

    Article  Google Scholar 

  • Postgate JR (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Postgate JR, Eady RR (1988) The evolution of biological nitrogen fixation. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: one hundred years after. Gustav Fischer, New York

    Google Scholar 

  • Qian J, Parker MA (2002) Contrasting nifD and ribosomal gene relationships among Mesorhizobium from Lotus oroboides in Northern Mexico. Syst Appl Microbiol 25:68–73

    Article  CAS  PubMed  Google Scholar 

  • Qian J, Kwon S-W, Parker MA (2003) rRNA and nifD phylogeny of Bradyrhizobium from sites across the Pacific Basin. FEMS Microbiol Lett 219:159–165

    Article  CAS  PubMed  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  PubMed  Google Scholar 

  • Riedel GE, Brown SE, Ausubel FM (1983) Nitrogen fixation by Klebsiella pneumoniae is inhibited by certain multicopy hybrid nif plasmids. J Bacteriol 153:45–56

    CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 110:1–61

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci USA 95:5145–5149

    Article  CAS  PubMed  Google Scholar 

  • Sur S, Sen A, Bothra AK (2007) Mutational drift prevails over translational efficiency in Frankia nif operons. Indian J Biotech 6:321–328

    CAS  Google Scholar 

  • Swofford D (2002) PAUP* 4.0: phylogenetic analysis using parsimony. Sinauer Associates, Sunderland

    Google Scholar 

  • Thiel T, Lyons EM, Erker JC, Ernst A (1995) A second nitrogenase in vegetative cells of a heterocystous-forming cyanobacterium. Proc Natl Acad Sci USA 92:9358–9362

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Lyons EM, Erker JC (1997) Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 179:5222–5225

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol (Suppl) 11:13–52

    CAS  Google Scholar 

  • Weinman JJ, Fellows FF, Gresshoff PM, Shine J, Scott KF (1984) Structural analysis of the genes encoding the molybdenum-iron protein of nitrogenase in the Parasponia rhizobium strain ANU289. Nucleic Acids Res 12:8329–8344

    Article  CAS  PubMed  Google Scholar 

  • Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16s rRNA sequences. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, Second edn. Springer, Heidelberg, pp 487–493

    Google Scholar 

  • Wilmotte A, Turner S, Van de Peer Y, Pace NR (1992) Taxonomic study of marine oscillatoriacean strains (cyanobacteria) with narrow trichomes. II. Nucleotide sequence analysis of the 16S ribosomal RNA. J Phycol 28:828–838

    Article  CAS  Google Scholar 

  • Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H et al (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. PNAS 105:7564–7569

    Article  CAS  PubMed  Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological Nitrogen Fixation. Chapman & Hall, New York, pp 43–86

    Google Scholar 

  • Zehr JP, Mellon MT, Hiorns WD (1997) Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143:1443–1450

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Mellon MT, Zani S (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microb 64:3444–3450

    CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

A Department of Botany Academic Challenge Grant to L.S.H. funded this research in part. We wish to acknowledge the help of Eric Tepe in developing the initital Mr. Bayes analyses and to The Center for Functional Genomics and Bioinformatics at Miami University for assistance with sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. Barnum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, L.S., Barnum, S.R. Inferring the Evolutionary History of Mo-Dependent Nitrogen Fixation from Phylogenetic Studies of nifK and nifDK . J Mol Evol 71, 70–85 (2010). https://doi.org/10.1007/s00239-010-9365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9365-8

Keywords

Navigation