Skip to main content
Log in

Cortical areas functionally linked with the cerebellar second homunculus during out-of-phase bimanual movements

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

We used functional magnetic resonance imagery (fMRI) to study cortical activation during index finger–thumb opposition of both hands using in-phase and out-of-phase modes. In-phase movements activated the sensorimotor cortex. During out-of-phase movements, activations were also observed in the supplementary motor area (SMA), in the cingulate motor area (CMA) and, less frequently, in the anterior cingulate cortex (ACC). As we have previously shown and confirmed in the present study, the same out-of-phase bimanual movements specifically activate the cerebellar second homunculus, leading us to postulate that the cerebellar second homunculus and medial wall motor areas participate in a circuit specifically involved in timing complex movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ellerman JM, Flament D, Kim SG, Fu QG, Merkle H, Ebner TJ, Ugurbil K (1994) Spatial patterns of functional activation of the cerebellum investigated using high field (4T) MRI. NMR Biomed 7:63–68

    Article  PubMed  CAS  Google Scholar 

  2. Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–73

    Article  PubMed  CAS  Google Scholar 

  3. Nitschke MF, Kleinschmidt A, Wessel K, Frahm J (1996) Somatotopic motor representation in the human cerebellum. A high-resolution functional MRI study. Brain 119:1023–1029

    Article  PubMed  Google Scholar 

  4. Rijntjes M, Buechel C, Kiebel S, Weiller C (1999) Multiple somatotopic representation in the human cerebellum. Neuroreport 10:3653–3658

    Article  PubMed  CAS  Google Scholar 

  5. Habas C, Axelrad H, Nguyen TH, Cabanis EA (2004) Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport 15:595–599

    Article  PubMed  CAS  Google Scholar 

  6. Habas C, Axelrad H, Cabanis EA (2004) The cerebellar second homunculus remains silent during passive bimanual movements. Neuroreport 15:1571–1574

    Article  PubMed  CAS  Google Scholar 

  7. Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60

    Article  PubMed  CAS  Google Scholar 

  8. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor active and cognitive circuits. Brain Res Rev 31:236–250

    Article  PubMed  CAS  Google Scholar 

  9. Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6:342–353

    Article  PubMed  CAS  Google Scholar 

  10. Immisch I, Waldvogel D, van Gelderen P, Hallett M (2001) The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. Neuroimage 14:674–684

    Article  PubMed  CAS  Google Scholar 

  11. Jantzen KJ, Steinberg FL, Kelso JA (2004) Brain networks underlying human timing behavior are influenced by prior context. Proc Natl Acad Sci U S A 17:6815–6820

    Article  Google Scholar 

  12. Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JAS (2003) Cortical and cerebellar activity during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Brain Res Cogn Brain Res 3:250–260

    Article  Google Scholar 

  13. Stephan KM, Binkofski F, Halsband U, Dohle C, Wunderlich G, et al (1999) The role of the ventral wall motor areas in bimanual co-ordination. A combined lesion and activation study. Brain 122:351–368

    Article  PubMed  Google Scholar 

  14. Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns GS (2003) Neural correlates of the complexity of rhythmic finger tapping. Neuroimage 20:918–926

    Article  PubMed  Google Scholar 

  15. Deiber MP, Honda M, Ibanez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect movements type and rate. J Neurophysiol 81:3065–3077

    PubMed  CAS  Google Scholar 

  16. Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, et al (1995) Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 74:802–815

    PubMed  CAS  Google Scholar 

  17. Seitz RJ, Stephan KM, Binkovski F (2000) Control of action as mediated by the human frontal lobe. Experimental Brain Research 133:71–80

    Article  PubMed  CAS  Google Scholar 

  18. Wiese H, Stude P, Nebel K, de Greiff A, Forsting M, et al (2004) Movement preparation in self-initiated versus externally triggered movements: an event-related fMRI-study. Neurosci Lett 371:220–225

    Article  PubMed  CAS  Google Scholar 

  19. Haslinger B, Erhard P, Altenmuller E, Hennenlotter A, Schwaiger M, et al (2004) Reduced recruitment of motor association areas during bimanual coordination in concert pianists. Hum Brain Mapp 22:206–215

    Article  PubMed  Google Scholar 

  20. Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    Article  PubMed  CAS  Google Scholar 

  21. Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y (1997) Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci 15:9667–9674

    Google Scholar 

  22. Serrien DJ, Nirkko AC, Lovblad KO, Wiesendanger M (2001) damage to the parietal lobe impairs bimanual coordination. Neuroreport 12:2721–2724

    Article  PubMed  CAS  Google Scholar 

  23. Jancke L, Shah NJ, Peters M (2000) Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Res Cogn Brain Res 10:177–183

    Article  PubMed  CAS  Google Scholar 

  24. Toyokura M, Muro I, Komiya T, Obara M (1999) Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: analysis using functional magnetic resonance imaging. Brain Res Bull 48:211–217

    Article  PubMed  CAS  Google Scholar 

  25. Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci U S A 99:10948–10953

    Article  PubMed  CAS  Google Scholar 

  26. Chen JT, Lin YY, Shan DE, Wu ZA, Hallett M, Liao KK (2005) Effect of transcranial magnetic stimulation on bimanual movements. J Neurophysiol 93:53–63

    Article  PubMed  Google Scholar 

  27. Debaere F, Wenderoth N, Sunaert S, van Hecke P, Swinnen SP (2004) Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia 42:855–867

    Article  PubMed  CAS  Google Scholar 

  28. Palay SL, Chan-Palay V (eds) (1974) Cerebellar cortex. Cytology and organization. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  29. Spencer RM, Zelaznik, HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300:1437–1439

    Article  PubMed  CAS  Google Scholar 

  30. Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 10:1136–1143

    Article  CAS  Google Scholar 

  31. Kennerley SW, Diedrichsen J, Hazeltime E, Semjen A, Ivry RB (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci 5:376–381

    Article  PubMed  CAS  Google Scholar 

  32. Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 49:641–662

    Article  PubMed  CAS  Google Scholar 

  33. Van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE (1998) Changes in brain activity during motor learning measured with PET: effects of hand performance and practice. J Neurophysiol 80:2177–2199

    PubMed  Google Scholar 

  34. Puttemans V, Wenderoth N, Swine SP (2005) Changes in brain activation during the acquisition of multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity. J Neurosci 25:4270–4278

    Article  PubMed  CAS  Google Scholar 

  35. Doyon J (1997) Skill learning. Int Rev Neurobiol 41:273–294

    PubMed  CAS  Google Scholar 

  36. Luft AR, Skalej M, Stefanou A, Klose U, Voigt K (1998) Comparing motion- and imagery-related activation in the human cerebellum: a functional MRI study. Hum Brain Mapp 6:105–113

    Article  PubMed  CAS  Google Scholar 

  37. Temprado JJ, Monno A, Zanone PG, Kelso JA (2002) Attentional demands reflect learning-induced alterations of bimanual coordination dynamics. Eur J Neurosci 16:1390–1394

    Article  PubMed  CAS  Google Scholar 

  38. Bischoff-Grethe A, Ivry RB, Grafton FT (2002) Cerebellar involvement in response reassignment rather than attentional process. J Neurosci 22:546–553

    PubMed  CAS  Google Scholar 

  39. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Habas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habas, C., Cabanis, E. Cortical areas functionally linked with the cerebellar second homunculus during out-of-phase bimanual movements. Neuroradiology 48, 273–279 (2006). https://doi.org/10.1007/s00234-005-0037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-005-0037-0

Keywords

Navigation