Skip to main content
Log in

Mathematical Models of Electrical Activity in Plants

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Electrical activity plays an important role in plant life; in particular, electrical responses can participate in the reception of the action of stressors (local electrical responses and oscillations) and signal transduction into unstimulated parts of the plant (action potential, variation potential and system potential). Understanding the mechanisms of electrical responses and subsequent changes in physiological processes and the prediction of plant responses to stressors requires the elaboration of mathematical models of electrical activity in plant organisms. Our review describes approaches to the simulation of plant electrogenesis and summarizes current models of electrical activity in these organisms. It is shown that there are numerous models of the generation of electrical responses, which are based on various descriptions (from modifications of the classical Hodgkin–Huxley model to detailed models, which consider ion transporters, regulatory processes, buffers, etc.). A moderate number of works simulate the propagation of electrical signals using equivalent electrical circuits, systems of excitable elements with local electrical coupling and descriptions of chemical signal propagation. The transmission of signals from a plasma membrane to intracellular compartments (endoplasmic reticulum, vacuole) during the generation of electrical responses is much less modelled. Finally, only a few works simulate plant physiological changes that are connected with electrical responses or investigate the inverse problem: reconstruction of the type and parameters of stimuli through the analysis of electrical responses. In the conclusion of the review, we discuss future perspectives on the simulation of electrical activity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aditya K, Udupa G, Lee Y (2011) Development of bio-machine based on the plant response to external stimuli. J Robot. doi:10.1155/2011/124314

    Google Scholar 

  • Beilby MJ (1981) Excitation-revealed changes in cytoplasmic Cl- concentration in “Cl–starved” Chara cells. J Membr Biol 62:207–218

    Article  CAS  Google Scholar 

  • Beilby MJ (1982) C1- channels in Chara. R Soc Lond B 299:435–445

    Article  CAS  Google Scholar 

  • Beilby MJ (1984) Current-voltage characteristics of the proton pump at Chara plasmalemma: I. pH dependence. J Membr Biol 81:113–125

    Article  Google Scholar 

  • Beilby MJ (2007) Action potential in Charophytes. Int Rev Cytol 257:43–82

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ, Al Khazaaly SA (2016) Re-modeling Chara action potential: I. from Thiel model of Ca2+ transient to action potential form. AIMS. Biophysics 3(3):431–449

    Article  Google Scholar 

  • Beilby MJ, Casanova MT (2014) The physiology of characean cells. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Beilby MJ, Coster HGL (1979) The action potential in Chara coralline: III. The Hodgkin-Huxley parameters for the plasmalemma. Aust J Plant Physiol 6:355–365

    CAS  Google Scholar 

  • Biskup B, Gradmann D, Thiel G (1999) Calcium release from InsP3-sensitive internal stores initiates action potential in Chara. FEBS Lett 453:72–76

    Article  CAS  PubMed  Google Scholar 

  • Blatt MR (1987) Electrical characteristics of stomatal guard cells: The contribution of ATP-dependent, “electrogenic” transport revealed by current-voltage and difference-current-voltage analysis. J Membr Biol 98:257–274

    Article  CAS  Google Scholar 

  • Bulychev AA, Vredenberg WJ (1995) Enchancement of the light-triggered electrical response in plant cells following their de-energisation witch uncouplers. Physiol Plant 94:64–70

    Article  CAS  Google Scholar 

  • Chatterjee SK, Ghosh S, Das S, Manzella V, Vitaletti A, Masi E, Santopolo L, Mancuso S, Maharatna K (2014) Forward and inverse modelling approaches for prediction of light stimulus from electrophysiological response in plants. Measurement 53:101–116

    Article  Google Scholar 

  • Chatterjee SK, Das S, Maharatna K, Masi E, Santopolo L, Mancuso S, Vitaletti A (2015) Exploring strategies for classification of external stimuli using statistical features of the plant electrical response. J R Soc Interface 12:20141225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z-H, Hills A, Bätz U, Amtmann A, Lew VL, Blatt MR (2012) Systems dynamic modeling of the stomatal guard cell. Predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol 159:1235–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhao D-J, Wang Z-Y, Wang Z-Y, Tang G, Huang L (2016) Plant electrical signal classification based on waveform similarity. Algorithms 9:70

    Article  Google Scholar 

  • Dreyer I, Blatt MR (2009) What makes a gate? The ins and outs of Kv-like K+ channels in plants. Trends Plant Sci 14:383–390

    Article  CAS  PubMed  Google Scholar 

  • Dziubinska H, Filek M, Koscielniak J, Trebacz K (2003) Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant nonstimulated leaves of Vicia faba minor seedlings. J Plant Physiol 160:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signaling in barley through action potentials. Planta 226:203–214

    Article  CAS  PubMed  Google Scholar 

  • Filek M, Kościelniak J (1997) The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba L. minor). Plant Sci 123:39–46

    Article  CAS  Google Scholar 

  • Fisahn J, Hansen UP, Lucas WJ (1992) Reaction kinetic model of a proposed plasma membrane two-cycle H+-transport system of Chara corallina. Proc Natl Acad Sci USA 89:3261–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Peña-Cortés H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459

    Article  CAS  PubMed  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plant 83:529–533

    Article  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant, Cell Environ 30:249–257

    Article  CAS  Google Scholar 

  • Furch ACU, Zimmermann MR, Will T, Hafke JB, van Bel AJE (2010) Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallé A, Lautner S, Flexas J, Fromm J (2015) Environmental stimuli and physiological responses: the current view on electrical signalling. Environ Exp Bot 114:15–21

    Article  Google Scholar 

  • Garkusha IV, Petrov VA, Vasiliev VA, Romanovsky YuM (2002) Propagating of bioelectric potentials in green plants’ conducting system. Mathematical modeling and experiment. Proc SPIE 4707:384–394

    Google Scholar 

  • Gerhardt M, Schuster H, Tyson JJ (1990) A cellular automation model of excitable media including curvature and dispersion. Science 247:1563–1566

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gradmann D (1976) “Metabolic” action potentials in Acetabularia. J Membr Biol 29:23–45

    Article  CAS  PubMed  Google Scholar 

  • Gradmann D (2001a) Impact of apoplast volume on ionic relations in plant cells. J Membr Biol 184:61–69

    Article  CAS  PubMed  Google Scholar 

  • Gradmann D (2001b) Models for oscillations in plants. Aust J Plant Physiol 28:577–590

    CAS  Google Scholar 

  • Gradmann D, Boyd M (1995) Membrane voltage of marine phytoplankton, measured in the diatom Coscinodiscus radiatus. Mar Biol 123:645–650

    Article  Google Scholar 

  • Gradmann D, Boyd CM (2005) Apparent charge of binding site in ion-translocating enzymes: kinetic impact. Eur Biophys J 34:353–357

    Article  CAS  PubMed  Google Scholar 

  • Gradmann D, Buschmann P (1997) Oscillatory interactions between voltage gated electroenzymes. J Exp Bot 48:399–404

    Article  CAS  PubMed  Google Scholar 

  • Gradmann D, Hoffstadt J (1998) Electrocoupling of ion transporters in plants: interaction with internal ion concentrations. J Membr Biol 166:51–59

    Article  CAS  PubMed  Google Scholar 

  • Gradmann D, Blatt MR, Thiel G (1993) Electrocoupling of ion transporters in plants. J Membr Biol 136:327–332

    Article  CAS  PubMed  Google Scholar 

  • Graham JS, Hall G, Pearce G, Ryan CA (1986) Regulation of proteinase inhibitors I and II mRNAs in leaves of wounded tomato plants. Planta 169:399–405

    Article  CAS  PubMed  Google Scholar 

  • Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays L. Plant, Cell Environ 30:79–84

    Article  Google Scholar 

  • Grams TE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant, Cell Environ 32:319–326

    Article  CAS  Google Scholar 

  • Hansen U-P, Gradmann D, Sanders D, Slayman CL (1981) Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. J Membr Biol 63:165–190

    Article  CAS  PubMed  Google Scholar 

  • Hansen U-P, Tittor J, Gradmann D (1983) Interpretation of current-voltage relationships for “active” ion transport systems: II. Nonsteady-state reaction kinetic analysis of class-I mechanisms with one slow time-constant. J Membr Biol 75:141–169

    Article  CAS  PubMed  Google Scholar 

  • Hauser H, Levine BA, Williams RJP (1976) Interactions of ions with membranes. Trends Biochem Sci 1:278–281

    Article  CAS  Google Scholar 

  • Hedrich R, Salvador-Recatalà V, Dreyer I (2016) Electrical wiring and long-distance plant communication. Trends Plant Sci 21:376–387

    Article  CAS  PubMed  Google Scholar 

  • Hills A, Chen Z-H, Amtmann A, Blatt MR, Lew VL (2012) OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlavinka J, Nožková-Hlaváčková V, Floková K, Novák O, Nauš J (2012) Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pretreated by ABA. Plant Physiol Biochem 54:89–96

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katicheva L, Sukhov V, Akinchits E, Vodeneev V (2014) Ionic nature of burn-induced variation potential in wheat leaves. Plant Cell Physiol 55:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Katicheva L, Sukhov V, Bushueva A, Vodeneev V (2015) Evaluation of the open time of calcium channels at variation potential generation in wheat leaf cells. Plant Signal Behav 10:e993231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krol E, Trebacz K (1999) Calcium-dependent voltage transients evoked by illumination in the liverwort Conocephalum conicum. Plant Cell Physiol 40:17–24

    Article  CAS  Google Scholar 

  • Krol E, Dziubinska H, Trebacz K (2003) Low-temperature induced transmembrane potential changes in the liverwort Conocephalum conicum. Plant Cell Physiol 44:527–533

    Article  CAS  PubMed  Google Scholar 

  • Krol E, Dziubińska H, Trebacz K (2004) Low-temperature-induced transmembrane potential changes in mesophyll cells of Arabidopsis thaliana, Helianthus annuus and Vicia faba. Physiol Plant 120:265–270

    Article  CAS  PubMed  Google Scholar 

  • Krol E, Dziubinska H, Stolarz M, Trebacz K (2006) Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula. Biol Plant 50:411–416

    Article  CAS  Google Scholar 

  • Król E, Dziubińska H, Trebacz K (2010) What do plants need action potentials for? In: Action Potential: DuBois ML (ed.) Biophysical and Cellular Context, Initiation, Phases and Propagation. Nova Science Publishers, New York, pp 1-26

  • Krupenina NA, Bulychev AA (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 1767:781–788

    Article  CAS  PubMed  Google Scholar 

  • Läuger P, Stark G (1970) Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim Biophys Acta 211:458–466

    Article  PubMed  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lautner S, Stummer M, Matyssek R, Fromm J, Grams TEE (2014) Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation. Plant, Cell Environ 37:254–260

    Article  CAS  Google Scholar 

  • León J, Rojo E, Sánchez-Serrano JJ (2001) Wound signaling in plant. J Exp Bot 52:1–9

    Article  PubMed  Google Scholar 

  • Malone M (1994) Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. New Phytol 128:49–56

    Article  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Article  Google Scholar 

  • Maśka M, Pietruszka M (1995) On the φ 4 field theoretical model for the action potential. J Biol Phys 21:211–222

    Article  Google Scholar 

  • Minguet-Parramona C, Wang Y, Hills A, Vialet-Chabrand S, Griffiths H, Rogers S, Lawson T, Lew VL, Blatt MR (2016) An optimal frequency in Ca2+ oscillations for stomatal closure is an emergent property of ion transport in guard cells. Plant Physiol 170:33–42

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature 500:422–426

    Article  CAS  PubMed  Google Scholar 

  • Mummert H, Gradmann D (1991) Action potentials in Acetabularia: measurement and simulation of voltage-gated fluxes. J Membr Biol 124:265–273

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayyar H (2003) Calcium as environmental sensor in plants. Curr Sci 84:893–902

    CAS  Google Scholar 

  • Nedbal L, Červený J, Schmidt H (2009) Scaling and integration of kinetic models of photosynthesis: towards comprehensive e-photosynthesis. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico. Understanding complexity from molecules to ecosystems. Springer, Dordrecht, pp 17–29

  • Novikova EM, Vodeneev VA, Sukhov VS (2017) Mathematical model of action potential in higher plants with account for the involvement of vacuole in the electrical signal generation. Biochem Moscow Suppl Ser A 11:151–167

    Article  Google Scholar 

  • Opritov VA, Pyatygin SS, Retivin VG (1991) Bioelectrogenesis in higher plants. Nauka, Moscow [in Russian]

    Google Scholar 

  • Opritov VA, Lobov SA, Pyatygin SS, Mysyagin SA (2005) Analysis of possible involvement of local bioelectric responses in chilling perception by higher plants exemplified by Cucurbita pepo Russ. J Plant Physiol 52:801–808

    CAS  Google Scholar 

  • Othmer HG (1997) Signal transduction and second messenger systems. In: Othmer HG, Adler FR, Lewis MA, Dallon J (eds) Case studies in mathematical modeling — ecology, physiology and cell biology. Prentice Hall, Englewood Cliffs, pp 99–126

    Google Scholar 

  • Pavlovič A, Slováková L, Pandolfi C, Mancuso S (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J Exp Bot 62:1991–2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietruszka M, Stolarek J, Pazurkiewicz-Kocot K (1997) Time evolution of the action potential in plant cells. J Biol Phys 23:219–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikulenko MM, Bulychev AA (2005) Light-triggered action potentials and changes in quantum efficiency of photosystem II in Anthoceros cells. Russ J Plant Physiol 52:584–590

    Article  CAS  Google Scholar 

  • Pyatygin SS (2004) Role of plasma membrane in cold action perception in plant cells. Biol Membr (Moscow) 21:442–449

    CAS  Google Scholar 

  • Pyatygin SS, Opritov VA, Khudyakov VA (1992) Subthreshold changes in excitable membranes of Cucurbita pepo L. stem cells during cooling-induced action-potential generation. Planta 186:161–165

    Article  CAS  PubMed  Google Scholar 

  • Retivin VG, Opritov VA, Fedulina SB (1997) Generation of action potential induces preadaptation of Cucurbita pepo L. stem tissues to freezing injury. Russ J Plant Physiol 44:432–442

    CAS  Google Scholar 

  • Retivin VG, Opritov VA, Lobov SA, Tarakanov SA, Khudyakov VA (1999) Changes in the resistance of photosynthesizing cotyledon cells of pumpkin seedlings to cooling and heating, as induced by the stimulation of the root system with KCl solution. Russ J Plant Physiol 46:689–696

    CAS  Google Scholar 

  • Rhodes JD, Thain J, Wildon DC (1999) Evidence for physically distinct systemic signaling pathways in the wounded tomato plant. Ann Bot 84:109–116

    Article  CAS  Google Scholar 

  • Roth A (1996) Water transport in xylem conduits with ring thickenings. Plant, Cell Environ 19:622–629

    Article  Google Scholar 

  • Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant, Cell Environ 23:825–837

    Article  CAS  Google Scholar 

  • Shabala S (2003) Physiological implications of ultradian oscillations in plant roots. Plant Soil 255:217–226

    Article  CAS  Google Scholar 

  • Shabala S, Knowles A (2002) Rhythmic patterns of nutrient acquisition by wheat roots. Funct Plant Biol 29:595–605

    Article  CAS  Google Scholar 

  • Shabala S, Newman I (1999) Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. Plant Physiol 119:1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S (2006) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J Exp Bot 57:171–184

    Article  CAS  PubMed  Google Scholar 

  • Shepherd VA, Beilby MJ, Al Khazaaly SA, Shimmen T (2008) Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport. Plant, Cell Environ 31:1575–1591

    Article  CAS  Google Scholar 

  • Sherstneva ON, Vodeneev VA, Katicheva LA, Surova LM, Sukhov VS (2015) Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings. Biochemistry (Moscow) 80:776–784

    Article  CAS  Google Scholar 

  • Sherstneva ON, Surova LM, Vodeneev VA, Plotnikova YuI, Bushueva AV, Sukhov VS (2016a) The role of the intra- and extracellular protons in the photosynthetic response induced by the variation potential in pea seedlings. Biochem Moscow Suppl Ser A 10:60–67

    Article  Google Scholar 

  • Sherstneva ON, Vodeneev VA, Surova LM, Novikova EM, Sukhov VS (2016b) Application of a mathematical model of variation potential for analysis of its influence on photosynthesis in higher plants. Biochem Moscow Suppl Ser A 10:269–277

    Article  Google Scholar 

  • Sibaoka T (1991) Rapid plant movements triggered by action potentials. Bot Mag Tokyo 104:73–95

    Article  Google Scholar 

  • Sibaoka T, Tabata T (1981) Electrotonic coupling between adjacent internodal cells of Chara braunii: Transmission of action potentials beyond the node. Plant Cell Physiol 22:397–411

    Google Scholar 

  • Sokolik AI, Visotskaya Zh, Krytynskaya E, Yurin V (2001) Interaction of ion-transport mechanisms at the plasmalemma of plant cells. Plant Nutr 92:200–201

    Article  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiol 113:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahlberg R, Cleland RE, van Volkenburgh E (2006) Slow wave potentials – a propagating electrical signal unique to higher plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer-Verlag, Berlin-Heidelberg, pp 291–309

    Google Scholar 

  • Sukhov V (2016) Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth Res 130:373–387

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Vodeneev V (2009) A mathematical model of action potential in cells of vascular plants. J Membr Biol 232:59–67

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Nerush V, Orlova L, Vodeneev V (2011a) Simulation of action potential propagation in plants. J Theor Biol 291:47–55

    Article  PubMed  Google Scholar 

  • Sukhov VS, Nerush VN, Vodeneev VA (2011b) An investigation of an action potential propagation in vascular plant using FitzHugh-Nagumo model. Comput Res Model 3:77–84 (in Russian)

    Google Scholar 

  • Sukhov V, Orlova L, Mysyagin S, Sinitsina J, Vodeneev V (2012) Analysis of the photosynthetic response induced by variation potential in geranium. Planta 235:703–712

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Akinchits E, Katicheva L, Vodeneev V (2013) Simulation of variation potential in higher plant cells. J Membr Biol 246:287–296

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Sherstneva O, Surova L, Katicheva L, Vodeneev V (2014a) Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant, Cell Environ 37:2532–2541

    Article  CAS  Google Scholar 

  • Sukhov V, Surova L, Sherstneva O, Vodeneev V (2014b) Influence of variation potential on resistance of the photosynthetic machinery to heating in pea. Physiol Plant 152:773–783

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Surova L, Sherstneva O, Bushueva A, Vodeneev V (2015a) Variation potential induces decreased PSI damage and increased PSII damage under high external temperatures in pea. Funct Plant Biol 42:727–736

    Article  Google Scholar 

  • Sukhov V, Surova L, Sherstneva O, Katicheva L, Vodeneev V (2015b) Variation potential influence on photosynthetic cyclic electron flow in pea. Front Plant Sci 5:766

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukhov V, Surova L, Morozova E, Sherstneva O, Vodeneev V (2016) Changes in H+-ATP synthase activity, proton electrochemical gradient, and pH in pea chloroplast can be connected with variation potential. Front Plant Sci 7:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Surova L, Sherstneva O, Vodeneev V, Katicheva L, Semina M, Sukhov V (2016a) Variation potential-induced photosynthetic and respiratory changes increase ATP content in pea leaves. J Plant Physiol 202:57–64

    Article  CAS  PubMed  Google Scholar 

  • Surova L, Sherstneva O, Vodeneev V, Sukhov V (2016b) Variation potential propagation decreases heat-related damage of pea photosystem I by 2 different pathways. Plant Sign Behav 11:e1145334

    Article  CAS  Google Scholar 

  • Trebacz K, Sievers A (1998) Action potentials evoked by light in traps of Dionaea muscipula Ellis. Plant Cell Physiol 39:369–372

    Article  CAS  Google Scholar 

  • Trebacz K, Tarnecki R, Zawadzki T (1989) The effect of ionic channel inhibitors and factors modifying metabolism on the excitability of the liverwort Conocephalum conicum. Physiol Plant 75:24–30

    Article  CAS  Google Scholar 

  • Trebacz K, Dziubinska H, Krol E (2006) Electrical signals in long-distance communication in plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer-Verlag, Berlin-Heidelberg, pp 277–290

    Google Scholar 

  • Tsaplev YB, Zatsepina GN (1980) Electric nature of variable potential propagation in tradescantia. Biofizika 25:708–712

    PubMed  Google Scholar 

  • Vodeneev VA, Opritov VA, Pyatygin SS (2006) Reversible changes of extracellular ph during action potential generation in a higher plant Cucurbita pepo. Russ J Plant Physiol 53:481–487

    Article  CAS  Google Scholar 

  • Vodeneev VA, Akinchits EK, Orlova LA, Sukhov VS (2011) The role of Ca2+, H+, and Cl ions in generation of variation potential in pumpkin plants. Russ J Plant Physiol 58:974–981

    Article  CAS  Google Scholar 

  • Vodeneev V, Orlova A, Morozova E, Orlova L, Akinchits E, Orlova O, Sukhov V (2012) The mechanism of propagation of variation potentials in wheat leaves. J Plant Physiol 169:949–954

    Article  CAS  PubMed  Google Scholar 

  • Vodeneev V, Akinchits E, Sukhov V (2015) Variation potential in higher plants: mechanisms of generation and propagation. Plant Sign Behav 10:e1057365

    Article  CAS  Google Scholar 

  • Vodeneev VA, Katicheva LA, Sukhov VS (2016) Electrical signals in higher plants: mechanisms of generation and propagation. Biophysics 61:505–512

    Article  CAS  Google Scholar 

  • Vodeneev V, Mudrilov M, Akinchits E, Balalaeva I, Sukhov V (2017) Parameters of electrical signals and photosynthetic responses induced by them in pea seedlings depend on the nature of stimulus. Funct Plant Biol. doi:10.1071/FP16342

    Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010) Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant, Cell Environ 33:816–827

    Article  Google Scholar 

  • Volkov AG, Reedus J, Mitchell CM, Tuckett C, Volkova MI, Markin VS, Chua L (2014) Memory elements in the electrical network of Mimosa pudica L. Plant Signal Behav 9:e982029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volkov AG, Nyasani EK, Tuckett C, Scott JM, Jackson MM, Greeman EA, Greenidge AS, Cohen DO, Volkova MI, Shtessel YB (2017) Electrotonic potentials in Aloe vera L.: effects of intercellular and external electrodes arrangement. Bioelectrochemistry 113:60–68

    Article  CAS  PubMed  Google Scholar 

  • Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca2+-liberation during action potential in the giant alga Chara. J Gen Physiol 118:11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacke M, Thiel G, Hütt M-T (2003) Ca2+ dynamics during membrane excitation of green alga Chara: model simulations and experimental data. J Membr Biol 191:179–192

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Elmer F-J (1997) Dry friction in the Frenkel-Kontorova-Tomlinson model: dynamical properties. Z Phys B 104:55–69

    Article  CAS  Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296:647–651

    Article  CAS  PubMed  Google Scholar 

  • Zhao DJ, Wanga Z-Y, Li J, Wena X, Liu A, Huanga L, Wangd X-D, Houd R-F, Wang C (2013) Recording extracellular signals in plants: a modeling and experimental study. Math Comput Model 58:556–563

    Article  Google Scholar 

  • Zhao DJ, Chen Y, Wang ZY, Xue L, Mao TL, Liu YM, Wang ZY, Huang L (2015) High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording. Sci Rep 5:13425

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann MR, Mithöfer A, Will T, Felle HH, Furch ACU (2016) Herbivore-triggered electrophysiological reactions: candidates for systemic signals in higher plants and the challenge of their identification. Plant Physiol 170:2407–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation (Contract No. 6.3199.2017/PCh) and the Russian Foundation for Basic Research (Project No. 16-04-01694 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sukhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhova, E., Akinchits, E. & Sukhov, V. Mathematical Models of Electrical Activity in Plants. J Membrane Biol 250, 407–423 (2017). https://doi.org/10.1007/s00232-017-9969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9969-7

Keywords

Navigation