Skip to main content
Log in

Molecular Dynamic Simulation of Transmembrane Pore Growth

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A molecular dynamic approach was applied for simulation of dynamics of pore formation and growth in a phospholipid bilayer in the presence of an external electric field. Processing the simulation results permitted recovery of the kinetic coefficients used in the Einstein–Smoluchowski equation describing the dynamics of pore evolution. Two different models of the bilayer membrane were considered: membrane consisting of POPC and POPE lipids. The simulations permitted us to find nonempirical values of the pore energy parameters, which are compared with empirical values. It was found that the parameters are sensitive to membrane type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MR (1979) Electric breakdown of bilayer membranes: 1. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg 6:37

    Google Scholar 

  • Antonov V, Petrov W, Molnar A, Predvoditelev D, Ivanov A (1980) Appearance of single-ion channels in unmodified lipid bilayer-membranes at the phase transition temperature. Nature 283:585

    Article  CAS  PubMed  Google Scholar 

  • Barnett A, Weaver J (1991) Electroporation: a unified, quantitative theory of reversible electrical breakdown, and rupture. Bioelectrochem Bioenerg 25:163

    Article  CAS  Google Scholar 

  • Bechinger B, Seelig J (1991) Interaction of the electric dipoles with phosholipid head groups. Biochemistry 30:3923–3929

    Article  CAS  PubMed  Google Scholar 

  • Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek JJ, Mir LM (1993) Electrochemotherapy, a new antitumor treatment. First clinical phase III trial. Cancer 72:3694

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: B. Pullman (ed) Intermolecular forces. Reidel, Dordrecht

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Berger O, Edholm O, Jähnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boeckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmueller H (2008) Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J 95:1837

    Article  CAS  Google Scholar 

  • Breton M, Delemotte L, Silve S, Mir L, Tarek M (2012) Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc 134:13938

    Article  CAS  PubMed  Google Scholar 

  • Buescher ES, Schoenbach KH (2003) Effects of submicrosecond, high intensity pulsed electric fields on living cells-intracellular electromanipulation. IEEE Trans Dielect Electr Insul 10:788

    Article  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(014):101

    Google Scholar 

  • Canatella PJ, Prausnitz M (2001) Prediction and optimization of gene transfection and drug delivery by electroporation. Gene Ther 8:1464

    Article  CAS  PubMed  Google Scholar 

  • Chang D (1989) Cell poration and cell fusion using an oscilating electric field. Biophys J 56:641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an n∙log(n) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2001) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709

    Article  Google Scholar 

  • Dickey A, Faller R (2008) Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys J 95:2636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freeman SA, Wang MA, Weaver JC (1994) Theory of electroporation of planar bilayer membranes: predictions of the aqueous area, change in capacitance, and pore–pore separation. Biophys J 67:42–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fromm ML, Taylor P, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791

    Article  CAS  PubMed  Google Scholar 

  • Gabriel B, Teissié J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardiner CW (2004) Handbook of stochastic methods, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Garner AL, Chen G, Chen N, Sridhara V, Kolb JF, Swanson RJ, Beebe SJ, Joshi RP, Schoenbach KH (2007) Ultrashort electric pulse induced changes in cellular dielectric properties. Biochem Biophys Res Comm 362:139

    Article  CAS  PubMed  Google Scholar 

  • Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437

    Article  CAS  PubMed  Google Scholar 

  • Gehl J, Geertsen P (2000) Efficient palliation of hemorrhaging malignant melanoma skin metastases by electrochemotherapy. Melanoma Res 10:585

    Article  CAS  PubMed  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Jaroszeski MJ, Reintgen DS, Puleo CA, DeConti RC, Gilbert RA, Glass LF (1998) Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin. Cancer 83:148

    Article  CAS  PubMed  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J 59:209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71(031):914

    Google Scholar 

  • Huang Y, Sekhon NS, Borninski J, Chen N, Rubinsky B (2003) Instantaneous, quantitative single-cell viability assessment by electrical evaluation of cell membrane integrity with microfabricated devices. Sens Actuator 105:31

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Isambert H (1998) Understanding the electroporation of cells and artificial bilayer membranes. Phys Rev Lett 80:3404

    Article  CAS  Google Scholar 

  • Kinosita K, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438

    Article  PubMed  Google Scholar 

  • Knight DE, Baker PF (1982) Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol 68:107

    Article  CAS  PubMed  Google Scholar 

  • Kramar P, Delemotte L, Lebar A, Kotulska M, Tarek M, Miklavcic D (2012) Molecular-level characterization of lipid membrane electroporation using linearly rising current. J Membr Biol 245:651

    Article  CAS  PubMed  Google Scholar 

  • Lantzsch G, Binder H, Heerklotz H (1994) Surface area per molecule in lipid/c12en. Membranes as seen by fluorescence resonance energy transfer. J Fluoresc 4:339

    Article  CAS  PubMed  Google Scholar 

  • Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36

    Article  CAS  PubMed  Google Scholar 

  • Marty M, Sersa G, Garbay J, Gehl J, Collins C et al (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer Suppl 4:3

    Article  CAS  Google Scholar 

  • Mir LM, Orlowski S, Belehradek J, Teissie J, Rols M, Sersa G, Miklavcic D, Gilbert R, Heller R (1995) Biomedical application of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem Bioenerg 38:203–207

    Article  CAS  Google Scholar 

  • Mir LM, Glass LF, Serša G, Teissié J, Domenge C, Miklavčič D, Jaroszeski MJ, Orlowski S, Reintgen DS, Rudolf Z, Belehradek M, Gilbert R, Rols MP, Belehradek JJ, Bachaud JM, DeConti R, Štabuc B, Čemažar M, Coninx P, Heller R (1998) Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br J Cancer 77:2336–2342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle—an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471

    Article  CAS  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang V, Hofschneider PN (1982) Gene transfer into mouse myeloma cells by electroporation in high electric fields. EMBO Eur Mol Biol Organ J 1:841

    CAS  Google Scholar 

  • Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16

    Article  CAS  PubMed  Google Scholar 

  • Nuccitelli R, Pliquett U, Chen X, Ford W, James Swanson R, Beebe SJ, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nspef). Bioelectromagnetics 28:655

    Article  CAS  PubMed  Google Scholar 

  • Panje WR, Hier MP, Garman GR, Harrell E, Goldman A, Bloch I (1998) Electroporation therapy of head and neck cancer. Ann Otol Rhinol Laryngol 107:779

    Article  CAS  PubMed  Google Scholar 

  • Pastushenko VF, Chizmadzhev YA, Arakelyan VB (1979) Electric breakdown of bilayer lipid membranes: II. Calculations of the membrane lifetime in the steady-state diffusion approximation. Bioelectrochem Bioenerg 6:53

    Article  CAS  Google Scholar 

  • Pathria RK (1972) Statistical mechanics. Pergamon, Oxford

    Google Scholar 

  • Potter H (1988) Electroporation in biology: methods, applications and instrumentation. Anal Biochem 174:361

    Article  CAS  PubMed  Google Scholar 

  • Rabussay D, Widera G (2002) Drug development and delivery including speciality pharma. Electroporation Ther 2:1

    Google Scholar 

  • Siu SW, Vácha R, Jungwirth P, Böckmann RA (2008) Biomolecular simulations of membranes: physical properties from different force fields. J Chem Phys 128(125):103

    Google Scholar 

  • Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal fl-globin locus by homologous recombination. Nature 317:233

    Article  Google Scholar 

  • Snoj M, Cemazar M, Srnovrsink T, Kosir SP, Sersa G (2009) Limb sparing treatment of bleeding melanoma recurrence by electrochemotherapy. Tumori 95:398

    PubMed  Google Scholar 

  • Sugar IP (1979) A theory of the electric field-induced phase transition of phospholipid bilayers. Biochem Biophys Res Commun 556:72

    CAS  Google Scholar 

  • Sun S, Wong JTY, Zhang TY (2011) Atomistic simulations of electroporation in water preembedded membranes. J Phys Chem B 115:13355–13359

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Shin B, Fujikura K, Matsuzaki T, Takata K (1998) Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett 425:436–440

    Article  CAS  PubMed  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91:11512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tekle E, Astumian RD, Friauf WA, Chock PB (2001) Asymmetric pore distribution and loss of membrane lipid in electroporated dopc vesicles. Biophys J 81:960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tieleman D, Leontiadou H, Mark A, Marrink S (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125:6382

    Article  CAS  PubMed  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2010) Gromacs user manual, version 4.5.4. www.gromacs.org

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ, Mir LM, Tieleman DP (2009) Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One 4:e7966

    Article  PubMed Central  PubMed  Google Scholar 

  • Weaver J (2000) Electroporation of cells and tissues. IEEE Trans Plasma Sci 28:24–33

    Article  CAS  Google Scholar 

  • Weaver JC, Mintzer RA (1981) Decreased bilayer stability due to transmembrane potentials. Phys Lett 86A:57–59

    Article  CAS  Google Scholar 

  • Wong TK, Neumann E (1982) Electric field-induced gene transfer. Biochem Biophys Res Commun 107:584

    Article  CAS  PubMed  Google Scholar 

  • Yang NS (1985) Transient gene expression in electroporated plant cells. Trends Biotechnol 3:191

    Article  CAS  Google Scholar 

  • Zimmermann U, Vienken J (1982) Electric field-induced cell to cell fusion. J Membr Biol 67:165

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Vienken J, Pilwat G (1980) Development of drug carrier systems: electric field induced effects in cell membranes. J Electroanal Chem 116:553

    Article  Google Scholar 

Download references

Acknowledgments

Supported in part by Grant of Government of Russian Federation in accordance with government regulation N220 (09.04.210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deminsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deminsky, M., Eletskii, A., Kniznik, A. et al. Molecular Dynamic Simulation of Transmembrane Pore Growth. J Membrane Biol 246, 821–831 (2013). https://doi.org/10.1007/s00232-013-9552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9552-9

Keywords

Navigation