Skip to main content

Advertisement

Log in

Residual rivaroxaban exposure after discontinuation of anticoagulant therapy in patients undergoing cardiac catheterization

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Patients treated with direct oral anticoagulants (DOACs) frequently undergo interventional procedures requiring temporary discontinuation of anticoagulant therapy. Little is known about remaining peri-procedural exposure to rivaroxaban in real-world patients.

Methods

Fifty-six patients with rivaroxaban treatment and scheduled cardiac catheterization were included in this prospective, observational, and single-center study. Rivaroxaban concentrations were determined by LC-MS/MS and a chromogenic anti-Xa assay. Population pharmacokinetic modeling was carried out on LC-MS/MS concentration data using NONMEM software, and results were applied to Monte Carlo simulations to predict appropriate rivaroxaban discontinuation intervals.

Results

Rivaroxaban concentrations ranged from <LLOQ to 300.6 ng/ml at the time of admission to hospital and from <LLOQ to 55.5 ng/ml at the beginning of the procedure. Times since last rivaroxaban intake were (mean ± SD) 51.0 ± 31.7 h (admission) and 85.5 ± 36.8 h (start catheterization). LC-MS/MS and anti-Xa assay results were in good agreement (r = 0.958); however, the anti-Xa assay may underestimate low rivaroxaban concentrations and overestimate rivaroxaban exposure when performed on plasma samples contaminated with heparins. Pharmacokinetics of rivaroxaban were adequately described, and simulations predicted that 95% of patients will have rivaroxaban concentrations ≤ 28.4 ng/ml (15 mg dose group) and ≤ 31.9 ng/ml (20 mg dose group) after 48 h of discontinuation.

Conclusions

In the majority of patients, rivaroxaban plasma concentrations dropped below 30 ng/ml after 48 h of treatment discontinuation which is considered hemostatically safe before surgery with high bleeding risk. For accurate determination of low rivaroxaban concentrations, LC-MS/MS is the preferred choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Samuelson BT, Cuker A (2017) Measurement and reversal of the direct oral anticoagulants. Blood Rev 31(1):77–84. https://doi.org/10.1016/j.blre.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  2. Levy JH, Spyropoulos AC, Samama CM, Douketis J (2014) Direct oral anticoagulants: new drugs and new concepts. JACC Cardiovasc Interv 7(12):1333–1351. https://doi.org/10.1016/j.jcin.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  3. Samuelson BT, Cuker A, Siegal DM, Crowther M, Garcia DA (2017) Laboratory assessment of the anticoagulant activity of direct oral anticoagulants: a systematic review. Chest 151(1):127–138. https://doi.org/10.1016/j.chest.2016.08.1462

    Article  PubMed  Google Scholar 

  4. Dale BJ, Chan NC, Eikelboom JW (2016) Laboratory measurement of the direct oral anticoagulants. Br J Haematol 172(3):315–336. https://doi.org/10.1111/bjh.13810

    Article  PubMed  Google Scholar 

  5. Blaich C, Müller C, Michels G, Wiesen MH (2015) Multi-analyte analysis of non-vitamin K antagonist oral anticoagulants in human plasma using tandem mass spectrometry. Clin Chem Lab Med 53(12):1981–1990. https://doi.org/10.1515/cclm-2014-1108

    Article  CAS  PubMed  Google Scholar 

  6. Wiesen MH, Blaich C, Streichert T, Michels G, Müller C (2017) Paramagnetic micro-particles as a tool for rapid quantification of apixaban, dabigatran, edoxaban and rivaroxaban in human plasma by UHPLC-MS/MS. Clin Chem Lab Med 55(9):1349–1359. https://doi.org/10.1515/cclm-2016-0888

    Article  CAS  PubMed  Google Scholar 

  7. Al-Aieshy F, Malmstrom RE, Antovic J, Pohanka A, Ronquist-Nii Y, Berndtsson M, Al-Khalili F, Skeppholm M (2016) Clinical evaluation of laboratory methods to monitor exposure of rivaroxaban at trough and peak in patients with atrial fibrillation. Eur J Clin Pharmacol 72(6):671–679. https://doi.org/10.1007/s00228-016-2060-y

    Article  CAS  PubMed  Google Scholar 

  8. Gouin-Thibault I, Delavenne X, Blanchard A, Siguret V, Salem JE, Narjoz C, Gaussem P, Beaune P, Funck-Brentano C, Azizi M, Mismetti P, Loriot MA (2017) Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost 15(2):273–283. https://doi.org/10.1111/jth.13577

    Article  CAS  PubMed  Google Scholar 

  9. Testa S, Tripodi A, Legnani C, Pengo V, Abbate R, Dellanoce C, Carraro P, Salomone L, Paniccia R, Paoletti O, Poli D, Palareti G, Register ST-L (2016) Plasma levels of direct oral anticoagulants in real life patients with atrial fibrillation: results observed in four anticoagulation clinics. Thromb Res 137:178–183. https://doi.org/10.1016/j.thromres.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  10. Sunkara T, Ofori E, Zarubin V, Caughey ME, Gaduputi V, Reddy M (2016) Perioperative management of direct oral anticoagulants (DOACs): a systemic review. Health Serv Insights 9(Suppl 1):25–36. https://doi.org/10.4137/HSI.S40701

    PubMed  PubMed Central  Google Scholar 

  11. Douketis JD, Spyropoulos AC, Kaatz S, Becker RC, Caprini JA, Dunn AS, Garcia DA, Jacobson A, Jaffer AK, Kong DF, Schulman S, Turpie AG, Hasselblad V, Ortel TL, Investigators B (2015) Perioperative bridging anticoagulation in patients with atrial fibrillation. N Engl J Med 373(9):823–833. https://doi.org/10.1056/NEJMoa1501035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, Hacke W, Oldgren J, Sinnaeve P, Camm AJ, Kirchhof P, Advisors (2016) Updated European Heart Rhythm Association practical guide on the use of non-vitamin-K antagonist anticoagulants in patients with non-valvular atrial fibrillation: executive summary. Eur Heart J. https://doi.org/10.1093/eurheartj/ehw058

  13. Beyer-Westendorf J, Gelbricht V, Forster K, Ebertz F, Kohler C, Werth S, Kuhlisch E, Stange T, Thieme C, Daschkow K, Weiss N (2014) Peri-interventional management of novel oral anticoagulants in daily care: results from the prospective Dresden NOAC registry. Eur Heart J 35(28):1888–1896. https://doi.org/10.1093/eurheartj/eht557

    Article  CAS  PubMed  Google Scholar 

  14. Shaw J, de Wit C, Le Gal G, Carrier M (2017) Thrombotic and bleeding outcomes following perioperative interruption of direct oral anticoagulants in patients with venous thromboembolic disease. J Thromb Haemost 15(5):925–930. https://doi.org/10.1111/jth.13670

    Article  CAS  PubMed  Google Scholar 

  15. Tripodi A (2016) To measure or not to measure direct oral anticoagulants before surgery or invasive procedures. J Thromb Haemost 14(7):1325–1327. https://doi.org/10.1111/jth.13344

    Article  CAS  PubMed  Google Scholar 

  16. Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, Hacke W, Oldgren J, Sinnaeve P, Camm AJ, Kirchhof P (2015) Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace 17(10):1467–1507. https://doi.org/10.1093/europace/euv309

    Article  PubMed  Google Scholar 

  17. Schulman S, Kearon C, Subcommittee on Control of Anticoagulation of the S, Standardization Committee of the International Society on T, Haemostasis (2005) Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 3(4):692–694. https://doi.org/10.1111/j.1538-7836.2005.01204.x

    Article  CAS  PubMed  Google Scholar 

  18. Camm AJ, Lip GY, De Caterina R, Savelieva I, Atar D, Hohnloser SH, Hindricks G, Kirchhof P, Guidelines ESCCP (2012) 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J 33(21):2719–2747. https://doi.org/10.1093/eurheartj/ehs253

    Article  PubMed  Google Scholar 

  19. Lindhoff-Last E, Samama MM, Ortel TL, Weitz JI, Spiro TE (2010) Assays for measuring rivaroxaban: their suitability and limitations. Ther Drug Monit 32(6):673–679. https://doi.org/10.1097/FTD.0b013e3181f2f264

    Article  CAS  PubMed  Google Scholar 

  20. Samama MM, Contant G, Spiro TE, Perzborn E, Guinet C, Gourmelin Y, Le Flem L, Rohde G, Martinoli JL, Rivaroxaban Anti-Factor Xa Chromogenic Assay Field Trial L (2012) Evaluation of the anti-factor Xa chromogenic assay for the measurement of rivaroxaban plasma concentrations using calibrators and controls. Thromb Haemost 107(2):379–387. https://doi.org/10.1160/TH11-06-0391

    Article  CAS  PubMed  Google Scholar 

  21. Lindbom L, Ribbing J, Jonsson EN (2004) Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput Methods Prog Biomed 75(2):85–94. https://doi.org/10.1016/j.cmpb.2003.11.003

    Article  Google Scholar 

  22. Keizer RJ, van Benten M, Beijnen JH, Schellens JH, Huitema AD (2011) Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Prog Biomed 101(1):72–79. https://doi.org/10.1016/j.cmpb.2010.04.018

    Article  Google Scholar 

  23. Bergstrand M, Karlsson MO (2009) Handling data below the limit of quantification in mixed effect models. AAPS J 11(2):371–380. https://doi.org/10.1208/s12248-009-9112-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Passing H, Bablok (1983) A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, part I. J Clin Chem Clin Biochem 21(11):709–720

    CAS  PubMed  Google Scholar 

  25. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160. https://doi.org/10.1177/096228029900800204

    Article  CAS  PubMed  Google Scholar 

  26. Xarelto® (rivaroxaban) summary of product characteristics (2016). Available at: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000944/human_med_001155.jsp&mid=WC0b01ac058001d124#product-info (Accessesd 11 Mai 2017)

  27. Pernod G, Albaladejo P, Godier A, Samama CM, Susen S, Gruel Y, Blais N, Fontana P, Cohen A, Llau JV, Rosencher N, Schved JF, de Maistre E, Samama MM, Mismetti P, Sie P, Working Group on Perioperative H (2013) Management of major bleeding complications and emergency surgery in patients on long-term treatment with direct oral anticoagulants, thrombin or factor-Xa inhibitors: proposals of the working group on perioperative haemostasis (GIHP)—March 2013. Arch Cardiovasc Dis 106(6–7):382–393. https://doi.org/10.1016/j.acvd.2013.04.009

    Article  PubMed  Google Scholar 

  28. Xu XS, Moore K, Burton P, Stuyckens K, Mueck W, Rossenu S, Plotnikov A, Gibson M, Vermeulen A (2012) Population pharmacokinetics and pharmacodynamics of rivaroxaban in patients with acute coronary syndromes. Br J Clin Pharmacol 74(1):86–97. https://doi.org/10.1111/j.1365-2125.2012.04181.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mueck W, Eriksson BI, Bauer KA, Borris L, Dahl OE, Fisher WD, Gent M, Haas S, Huisman MV, Kakkar AK, Kalebo P, Kwong LM, Misselwitz F, Turpie AG (2008) Population pharmacokinetics and pharmacodynamics of rivaroxaban—an oral, direct factor Xa inhibitor—in patients undergoing major orthopaedic surgery. Clin Pharmacokinet 47(3):203–216. https://doi.org/10.2165/00003088-200847030-00006

    Article  CAS  PubMed  Google Scholar 

  30. Godier A, Martin AC, Leblanc I, Mazoyer E, Horellou MH, Ibrahim F, Flaujac C, Golmard JL, Rosencher N, Gouin-Thibault I (2015) Peri-procedural management of dabigatran and rivaroxaban: duration of anticoagulant discontinuation and drug concentrations. Thromb Res 136(4):763–768. https://doi.org/10.1016/j.thromres.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  31. Godier A, Dincq AS, Martin AC, Radu A, Leblanc I, Antona M, Vasse M, Golmard JL, Mullier F, Gouin-Thibault I (2017) Predictors of pre-procedural concentrations of direct oral anticoagulants: a prospective multicentre study. Eur Heart J 38(31):2431–2439. https://doi.org/10.1093/eurheartj/ehx403

    Article  PubMed  Google Scholar 

  32. Eller T, Flieder T, Fox V, Gripp T, Dittrich M, Kuhn J, Alban S, Knabbe C, Birschmann I (2017) Direct oral anticoagulants and heparins: laboratory values and pitfalls in ‘bridging therapy’. Eur J Cardiothorac Surg 51(4):624–632. https://doi.org/10.1093/ejcts/ezw368

    PubMed  Google Scholar 

  33. Dubois V, Dincq AS, Douxfils J, Ickx B, Samama CM, Dogne JM, Gourdin M, Chatelain B, Mullier F, Lessire S (2017) Perioperative management of patients on direct oral anticoagulants. Thromb J 15(1):14. https://doi.org/10.1186/s12959-017-0137-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chang SH, Chou IJ, Yeh YH, Chiou MJ, Wen MS, Kuo CT, See LC, Kuo CF (2017) Association between use of non-vitamin K oral anticoagulants with and without concurrent medications and risk of major bleeding in nonvalvular atrial fibrillation. JAMA 318(13):1250–1259. https://doi.org/10.1001/jama.2017.13883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kolluri R, Fowler B, Nandish S (2013) Vascular access complications: diagnosis and management. Curr Treat Options Cardiovasc Med 15(2):173–187. https://doi.org/10.1007/s11936-013-0227-8

    Article  PubMed  Google Scholar 

  36. Sherev DA, Shaw RE, Brent BN (2005) Angiographic predictors of femoral access site complications: implication for planned percutaneous coronary intervention. Catheter Cardiovasc Interv 65(2):196–202. https://doi.org/10.1002/ccd.20354

    Article  PubMed  Google Scholar 

  37. Gunning MG, Williams IL, Jewitt DE, Shah AM, Wainwright RJ, Thomas MR (2002) Coronary artery perforation during percutaneous intervention: incidence and outcome. Heart 88(5):495–498. https://doi.org/10.1136/heart.88.5.495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, Kim YH, Klein G, Packer D, Skanes A (2005) Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation 111(9):1100–1105. https://doi.org/10.1161/01.CIR.0000157153.30978.67

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the medical and nursing staff of the Department of Cardiology for kind and invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin H. J. Wiesen.

Ethics declarations

This study was approved by the local Ethics Committee of the University Hospital of Cologne (14-066) and carried out in accordance with the Helsinki declaration (DRKS00006002).

Conflict of interest

Dr. Wiesen reports personal fees from Pfizer Pharma GmbH, outside the submitted work. All other authors report no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiesen, M.H.J., Blaich, C., Taubert, M. et al. Residual rivaroxaban exposure after discontinuation of anticoagulant therapy in patients undergoing cardiac catheterization. Eur J Clin Pharmacol 74, 611–618 (2018). https://doi.org/10.1007/s00228-018-2421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2421-9

Keywords

Navigation