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Abstract Genetic factors contribute to the phenotype of
drug response, but the translation of pharmacogenetic
outcomes into drug discovery, drug development or clinical
practice has proved to be surprisingly disappointing.
Despite significant progress in pharmacogenetic research,
only a few drugs, such as cetuximab, dasatinib, maraviroc
and trastuzumab, require a pharmacogenetic test before
being prescribed. There are several gaps that limit the
application of pharmacogenetics based upon the complex
nature of the drug response itself. First, pharmacogenetic
tests could be more clinically applicable if they included a
comprehensive survey of variation in the human genome
and took into account the multigenic nature of many
phenotypes of drug disposition and response. Unfortunate-
ly, much of the existing research in this area has been
hampered by limitations in study designs and the nonopti-
mal selection of gene variants. Secondly, although
responses to drugs can be influenced by the environment,
only fragmentary information is currently available on how
the interplay between genetics and environment affects
drug response. Third, the use of a pharmacogenetic test as a
standard of care for drug therapy has to overcome
significant scientific, economic, commercial, political and
educational barriers, among others, in order for clinically

useful information to be effectively communicated to
practitioners and patients. Meanwhile, the lack of efficacy
is in this process is quite as costly as drug toxicity, especially
for very expensive drugs, and there is a widespread need for
clinically and commercially robust pharmacogenetic testing to
be applied. In this complex scenario, therapeutic drug
monitoring of parent drugs and/or metabolites, alone or
combined with available pharmacogenetic tests, may be an
alternative or complementary approach when attempts are
made to individualize dosing regimen, maximize drug
efficacy and enhance drug safety with certain drugs and
populations (e.g. antidepressants in older people).

Keywords Pharmacogenetics . Biomarkers . Therapeutic
drug monitoring (TDM) . Personalized medicine

Introduction

Despite the continuous advances in the discovery and
design of drugs, the interindividual variability to the
standard dose of a given drug remains a serious problem
in clinical practice. Drug treatment is, in many cases,
ineffective with a high number of non-responders (30–60%)
to drug therapy [1]. Moreover, serious adverse drug
reactions (ADRs) cause or contribute to 6–7% of all
hospitalizations, a 2-day increase in the average length of
hospitalization and over 100,000 deaths annually in the
USA and may, according to some estimates, cost about as
much as the drug treatment itself [2].

A significant portion of the variability in drug response
can be attributed to genetic factors through modulation of
drug pharmacokinetics and/or pharmacodynamics. There-
fore, the rationale behind pharmacogenetics is to deal with
genes encoding drug transporters, drug-metabolizing
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enzymes and drug targets that can predict the usefulness of
a particular drug so as to increase the number of responders
and decrease the number of subjects affected by ADRs.
Within this framework, our current level of knowledge is
most advanced regarding the influence of polymorphically
distributed genes encoding drug-metabolizing enzymes, in
particular, the cytochrome P450s (CYPs), which have the
highest impact on interindividual differences in drug
response. However, our knowledge of drug transporters
and receptors is rapidly growing.

There are 57 known active CYP genes in the human
genome and 58 pseudogenes (http://drnelson.uthsc.edu/
CytochromeP450.html; [3]). The CYP enzyme families 1–
3 are generally polymorphic and responsible for 70–80% of
all phase I-dependent metabolism of clinically used drugs
[4]. Furthermore, in a review of drugs that are frequently
cited in ADR studies, 59% were found to be metabolized
by at least one enzyme that is known to have a genetic
variant for poor metabolism [5]. Updated information can
be found on the Human CYP allele nomenclature website
(http://www.cypalleles.ki.se/). Polymorphic enzymes (in
particular CYP2C9, CYP2C19 and CYP2D6) mediate the
metabolism of about 40–45% of all drugs on the market.
Mutations in the CYP genes can produce enzymes with
abolished, reduced, altered or increased enzyme activity,
leading to four major phenotypes: poor metabolizers (PMs),
who lack functional enzyme; intermediate metabolizers
(IMs), who are heterozygous for a defect allele or carry
two alleles that cause reduced activity; extensive metabo-
lizers (EMs), who have two normal alleles; ultrarapid
metabolizers (UMs), who carry more than two functional
gene copies.

Since its independent discovery in three different
laboratories in the 1970s, there can be no doubt that the
CYP2D6 polymorphism (debrisoquine/sparteine hydroxyl-
ation polymorphism) is by far the most extensively studied
polymorphically expressed drug-metabolizing enzyme in
humans. The CYP2D6 gene, which is localized on
chromosome 22q13.1, has turned out to be extremely
polymorphic, with approximately 100 allelic variants
described to date. Three major mutant alleles, CYP2D6*3,
*4 and *5, are associated with the PM phenotype. In
Western Europe, the incidence of PMs is 7%. The term UM
was coined after first disclosure by Johansson et al. [6], of an
inherited duplication/multiduplication of an active gene
encoding a drug-metabolizing enzyme in two Swedish
families, with up to 12 extra CYP2D6 gene copies in the
subjects who possessed very high CYP2D6 (debrisoquine)
metabolic activity [6]. Subsequent investigations of the
frequencies of UMs in different populations revealed a
European–African (north–south) gradient in the incidence of
CYP2D6 gene duplication. UMs are uncommon (1–3%) in
Northern Europe and Germany, but are preferentially

distributed among populations in the Mediterranean area,
where 10% of the populations of Portugal, Spain, Italy and
Turkey carry alleles with multiple CYP2D6 gen copies. The
frequency of UMs is as high as 29% in Ethiopians and 20%
in Saudi Arabians.

Estimates reveal that between 20 and 25% of all drugs in
clinical use are metabolized at least in part by CYP2D6.
Subjects with multiple gene copies will metabolize drugs
more rapidly, and therapeutic plasma levels will not be
achieved at ordinary drug dosages. Individuals lacking
functional CYP2D6 genes metabolize selective CYP2D6
substrates at a lower rate, and the risk for ADRs is higher
[7]. It would therefore be ideal if practicing physicians
could use genetic tests—before a pharmaceutical was ever
administered—to optimize a patient’s chance of significant-
ly benefitting from drug treatment and to prevent most, if
not all, ADRs. Both consequences of such an approach
would result in lowering the overall expenditure for health
care [8, 9].

Nevertheless, the sources of variability in drug response
are multifactorial and apart from genetics, other factors, such
as pathophysiology, environment, drug–drug interactions,
drug allergies, medication errors and poor compliance, may
have a profound impact on drug pharmacokinetics and/or
pharmacodynamics, thereby affecting the therapeutic out-
come tremendously. Thus, one should keep in mind that the
majority of drug-response phenotypes are result from the
nature versus nurture combination of genetic, environmen-
tal, and gene–environment interactions [10]. This issue
highlights the role of therapeutic drug monitoring (TDM)
as a potentially useful and complementary approach of
pharmacogenetic testing for making a therapeutic decision
and guiding individual drug dosing.

This review discusses a number of examples of the clinical
applicability and usefulness of pharmacogenetic testing, either
alone or in combination with TDM methods, for optimally
guiding drug therapy. The aim was not to present an
exhaustive description of pharmacogenetic and TDM meth-
ods, but to consider some important achievements, with
emphasis on the pharmacogenetics of drug-metabolizing
enzymes. In fact, the most frequently used categories of
drugs with pharmacogenetic testing information in drug
labels are those whose pharmacokinetics are affected by
variations in CYP enzymes [11]. The drugs discussed here
were selected on the basis of drug labelling-containing
pharmacogenetic information and/or TDM recommendations.

General considerations on pharmacogenetic testing
and TDM

The rapid development in our understanding of the genetic
basis behind interindividual differences in drug response

756 Eur J Clin Pharmacol (2010) 66:755–774

http://drnelson.uthsc.edu/CytochromeP450.html
http://drnelson.uthsc.edu/CytochromeP450.html
http://www.cypalleles.ki.se/


has been the result of two interwoven processes: human
genome sequencing and the development of new technologies
enabling automated and efficient genetic testing. One manner
by which pharmacogenetic knowledge can be translated into
routine clinical practice is by the establishment of guidelines
and support from regulatory agencies. In fact, the pharmaco-
genetic revolution prompted the European Medicines Agency
(EMEA) to establish in 2001 (formalized in 2005) the
Pharmacogenetics (since 2008, Pharmacogenomics) Working
Party (PGWP) group. It is a permanent and multidisciplinary
core group of up to 14 experts that provide recommendations
to the EMEA’s Committee for Medicinal Products for Human
Use (CHMP) on all matters relating directly or indirectly to
pharmacogenomics. Further details of the composition PGWP
group and scheduled meetings are available at websites http://
www.ema.europa.eu/pdfs/human/pharmacogenetics/
pgwpmandate.pdf and http://www.ema.europa.eu/pdfs/
human/pharmacogenetics/pgwpworkprogramme.pdf.

In January 2005, the U.S. Food and Drug Administration
(FDA) gave its approval to the first pharmacogenetic test,
the AmpliChip CYP450 test [12]. Currently, pharmacoge-
netic information is contained in more than 200 drug labels
in the USA, and a significant increase in labels containing
such information has been observed over the last decade.
The FDA encourages the collection of genetic information
and has recently approved modifications to 58 drug labels
that now contain pharmacogenetic information [13].

The list of clinically available pharmacogenetic bio-
markers and relevant drugs for which they can predict drug
response is given in Table 1. The labeling of drugs is
performed in the context of available knowledge and
applicable standards at the time the labeling process takes
place, and it is updated as new information becomes
available. In many cases, the identified drug labels provide
pharmacogenomic information without recommending a
specific action, and only a few labels recommend or require
biomarker testing as a basis for reaching a therapeutic
decision. Assumptions are made because several issues
arise when pharmacogenetic testing becomes part of routine
analyses in clinical practice.

A critical step to select pharmacogenetic biomarkers is to
diagnose the genetic variants associated with an increased
risk for drug toxicity or idiosyncratic reactions and those
variants that are associated with therapeutic failure [10].
However, it may take many years of study to identify
genetic risk factors clinically relevant for drug pharmaco-
kinetics and/or pharmacodynamics, and this delay impedes
our ability to identify, evaluate and use genetics to optimize
drug selection and dose. Moreover, drug approvals have
only recently included more pharmacogenomic information
and, consequently, still few pharmacogenomic biomarkers
have the status of required or recommended (approximately
3% prevalence in the study by Frueh et al. [11]). These gaps

need to be overcome to ensure that pharmacogenomic
information will be directly applicable to patient care.

On the other hand, although it is obvious that a significant
portion of the variability in response to many drugs can be
attributed to genetic factors, it is also important to consider the
nongenetic influences that have a profound impact on drug
response. Thus, factors such as diet [14], drug interactions
[15–17], adherence [18], age [19], organ function and
disease [20, 21] are critical components of intra- and
intersubject variability in drug response.

Thus, the effective design and interpretation of clinical
studies that can simultaneously examine numerous contrib-
utory genetic and environmental aspects, while at the same
time recognizing the degree to which environmental factors
may be capable of obscuring genetic associations, are major
challenges for the future.

It is known that underlying or coexisting conditions
often influence the expression of many genes critical to
drug disposition. For instance, tumor-associated inflamma-
tory responses resulting in a downregulation of CYP3A-
mediated metabolism, but not genetic factors, have been
found to contribute to the variability in drug clearance and
toxicity of docetaxel in cancer patients [22].

Additionally, drug interactions are by far the most
important factors to consider as sources of variability in drug
response and the main contributory factors that explain why
the drug metabolic genotype does not reflect the phenotype
accurately, therefore limiting the usefulness of genotyping
methods. This is an important health concern in psychiatry
because psychiatric patients frequently require combinations
of psychotropic drugs to treat comorbid psychiatric or somatic
disorders, to control ADRs or to augment a medication effect
[16, 17, 23–28]. Most psychotropic drugs are lipophilic
agents extensively metabolized in the liver before excretion.
These drugs undergo phase I oxidative reactions, and the
mechanism of clinically relevant drug interactions normally
involves the inhibition or induction of the activity of
cytochrome P450 enzymes. In the broad sense, of unique
importance is the capacity of the selective serotonin re-uptake
inhibitors to inhibit the metabolic activity of human CYPs
[23, 29, 30]. In this context, in psychiatry, TDM may provide
a rational basis for optimal drug therapy and a suitable tool to
assess the drug-related phenotype accurately [9, 31, 32].

TDM is based on the hypothesis that the concentration
of a drug in the blood (plasma or serum) reflects the
concentration at the target site better than the given dose. It
is also is based on the assumption that there is a definable
relationship between plasma drug concentration and clinical
effects. TDM, as a pharmacogenetic testing approach, is a
valid tool to phenotype the pharmacokinetics of a drug and
individualize drug therapy, adjusting patient’s dose require-
ments through the measurement and interpretation of drug
concentrations.
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TDM methodological approaches have developed in
three phases starting, more than 40 years ago, with
conventional TDM of psychotropic drugs as an useful
model for exploring genetic and environmental factors
involved in interindividual variability in drug metabolism
[33, 34]. During the 1990s, TDM was supplemented by
pharmacogenetic methods for phenotyping and later im-
proved by the addition of genotyping methods. In 2004,
the first consensus guidelines on the indications for TDM
and recommended plasma levels of antidepressants and
antipsychotic drugs were published by an interdisciplinary
TDM group of the Arbeitsgemeinschaft fur Neuropsycho-
pharmakologie und Pharmakopsychiatrie (AGNP) [35, 36].

These guidelines classified the scientific strength of the
recommendations for TDM of drugs into five groups,
namely, (1) strongly recommended, (2) recommended, (3)
useful, (4) probably useful and (5) not recommended.
Consensus guidelines also exist for the determination of
lithium, anticancer drugs, immunosuppressant drugs, anti-
retroviral drugs and certain antibiotics, among others
[37–41].

Based upon the evidence that disentangling environmen-
tal effects from genetic influence as sources of variability in
drug response is not always possible, the combined use of
classical TDM (as a phenotyping approach) and genotyping
of drug metabolic capacity is currently considered to be the

Table 1 List of clinically valid pharmacogenetic biomarkers and level of recommendation for related drugs in the context of FDA-approved drug
labels

Pharmacogenetic marker [106] Representative drug Disease Test namea

CCR5 expression +++ Maraviroc HIV infection Trofile

c-KIT expression + Imatinib Gastrointestinal stromal tumor DakoCytomation c-Kit pharmDx

CYP2C9 variants;
VKORC1 variants ++

Warfarin Thromboembolism Verigene Warfarin Metabolism
Nucleic Acid Test

CYP2C19 variants + Voriconazole Fungal infection Roche Amplichip CYP450 test

CYP2D6 variants + Atomoxetine, fluoxetine Attention-deficit hyperactivity
disease, depression, OCD

Roche Amplichip CYP450 test

DPD deficiency + Capecitabine, 5-FU Colorectal cancer TheraGuide 5-FU

EGFR expression + Erlotinib Non-small-cell lung cancer DakoCytomation EGFr pharmDx

EGFR expression and
K-RAS mutation +++

Cetuximab, panitumumab Colorectal cancer DakoCytomation EGFr pharmDx
and Nucleotide sequencing-high-
resolution melting (HRM) analysis

G6PDH deficiency + Primaquine Malaria Glucose-6-phosphate dehydrogenase
screening

G6PDH deficiency ++ Rasburicase Hyperuricemia Glucose-6-phosphate dehydrogenase
screening

HER2/NEU overexpression +++ Trastuzumab Breast cancer Herceptest

HLA-B*1502b ++ Carbamazepine, phenytoin Epilepsy HLA typing

HLA-B*5701 ++ Abacavir HIV infection HLA typing

NAT variants + Isoniazid, rifampin Tuberculosis Genelex

Ph1 chromosome + Busulfan Chronic myelogenous leukemia BCR/ABL test

Ph1 chromosome +++ Dasatinib, imatinib Acute lymphoblastic leukemia BCR/ABL test

PML/RAR gene expression + Tretinoin Acute promyelocystic leukemia PML/RARα quantitative
real-time PCR

TPMT variants ++ Azathioprine, 6-MP, thioguanine Acute lymphocytic leukemia Prometheus TPMT Genetics

UGT1A1 variants + Nilotinib Chronic myelogenous leukemia Invader UGT1A1 Molecular Assay

UGT1A1 variants ++ Irinotecan Colorectal cancer Invader UGT1A1 Molecular Assay

5-FU, 5-Fluorouracil; 6-MP, 6-mercaptopurine; ABL, Abelson; BCR, breakpoint cluster region; CCR, chemokine (C-C motif) receptor; c-KIT, v-
kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog; CYP2C9, cytochrome 2C9; CYP2C19, cytochrome 2C19; CYP2D6, cytochrome
2D6; DPD, dihydropyrimidine dehydrogenase; EGFR, epidermal growth factor receptor; FDA, U.S. Food and Drug Administration; G6PDH,
glucose-6-phosphate dehydrogenase; HER, human epidermal growth factor receptor; HLA, human leukocyte antigen; NAT, N-acetyltransferase;
OCD, obsessive-compulsive disorders; Ph1, Philadelphia; PML/RAR, retinoic acid receptor; TPMT, thiopurine S-methyltransferase; UGT1A1,
uridine diphosphate glucuronosyltransferase 1A1; VKORC1, vitamin K epoxide reductase complex subunit 1.
a The names of specific pharmacogenetic tests are provided for information purposes only as examples of available tests and do not constitute an
endorsement of any particular test or vendor
b For patients with an Asian ancestry. FDA classification: +, for information only; ++, recommended; +++, required
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most sophisticated way to individualize the dosage of
several drugs for which the effects are difficult to evaluate
[9, 38, 41–43].

Clinical applicability of pharmacogenetic testing
and TDM in the context of pharmacogenetic
information added to drug labels

Immunosupressant drugs

Tacrolimus

The calcineurin inhibitor tacrolimus is highly effective in
preventing acute rejection after solid organ transplantation,
including that of the liver and kidney. Since calcineurin
inhibitors in general show high inter- and intrasubject
variability in pharmacokinetics while displaying a narrow
therapeutic index, the influence of genetic polymorphisms
in the development of toxicity has also been explored.

Tacrolimus is extensively metabolized by CYP3A iso-
forms [44], which are encoded by genes with known
polymorphisms. Of these, the CYP3A5*3 allelic variant
(present in most Caucasian individuals) produces a truncat-
ed protein with no activity. Therefore, only carriers of at
least one wild-type (WT) allele, CYP3A5*1, are able to
express functional protein.

In 2003, two studies in renal transplant recipients of
Caucasian origin [45, 46] demonstrated that patients with the
CYP3A5*3/*3 genotype require less tacrolimus to reach target
predose concentrations than those with the CYP3A5*1/*1
genotype (CYP3A5 expressors). Later studies in different
populations, both in kidney and liver transplant recipients,
further confirmed these initial findings [47–50]. For renal
transplant recipients receiving tacrolimus, practitioners can
expect CYP3A5*1 allele carriers to have a 25–45% greater
tacrolimus clearance than CYP3A5*3 homozygotes, with
proportional dosing needed to maintain adequate immuno-
suppression [51].

Tacrolimus is also a substrate for the drug transporter P-
glycoprotein (Pgp), encoded by the ABCB1 gene. In
consequence, the effect of ABCB1 polymorphisms on
tacrolimus pharmacokinetics and pharmacodynamics has
been extensively studied, although with contradictory
results [47, 52–54]. The study by Elens et al. [55] in 150
liver donors helped to clarify this situation, as their results
show how ABCB1 single nucleotide polymorphisms (SNPs)
significantly influence tacrolimus hepatic concentrations,
but not blood levels. As tacrolimus hepatic concentrations
have been significantly related to the graft outcome, the
authors suggested that it might be interesting to genotype
livers donors for ABCB1 polymorphisms to better individ-
ualize immunosupression therapy with tacrolimus.

However, the genotype combinations CYP3A4*1/
CYP3A5*1 and CYP3A4*1B/CYP3A5*1 have been signif-
icantly more frequently associated with tacrolimus-related
nephrotoxicity than the CYP3A4*1/CYP3A5*3 genotype,
which is the most common in Caucasians [56]. One study
failed to find an association between ABCB1 polymor-
phisms and adverse effects [56]; however, in an earlier
published report on the use of cyclosporine, by Hauser et al.
[57] suggested that it is the ABCB1 genotype of the
donor—and not of the recipient—that is the main risk
factor for the development of nephrotoxicity, and such
could also be the case of tacrolimus.

Taken as a whole, these reports support the concept that
pharmacogenetic testing could be useful when administer-
ing tacrolimus in routine clinical practice. Indeed, this has
been very recently demonstrated by a large prospective
study that may be considered a proof of concept. In this
study, kidney transplant recipients were randomly assigned
to receive tacrolimus either according to CYP3A5 genotype
or according to the standard daily regimen. Pharmacoge-
netic adaptation of the daily dose of tacrolimus allowed
individualization of the first doses administered and was
associated with a higher proportion of patients achieving
target trough concentration (C0) at an earlier time point after
the transplant, fewer tacrolimus dose modifications, and a
shorter delay in reaching target C0 level [58].

Finally, since inadequate immunosuppression is linked to
graft rejection and because high tacrolimus plasma levels
have been associated to serious adverse effects, TDM may
be helpful in the first stages of the treatment in determining
an appropriate starting dosage, rapidly achieving adequate
immunosuppression through controlling the evolution of
tacrolimus levels and ultimately improving the outcome of
renal transplantation (Table 2) [59].

Thiopurines

As classic prodrugs, thiopurines (azathioprine, 6-
mercaptopurine and 6-thioguanine) require bioactivation
by a multistep pathway to form thioguanine nucleotides (6-
TGNs), which are thought to be responsible for their
pharmacological effect but also for bone marrow toxicity.
These active (and toxic) metabolites are inactivated by
thiopurine S-methyltransferase (TPMT) [60], whose genetic
locus is subject to genetic polymorphisms associated with
decreased enzyme activity. Heterozygous individuals (7–
15% of Caucasians) show intermediate TPMT activity,
whereas WT homozygous subjects, accounting for 85–90%
of the population, display full TPMT activity. Interestingly,
approximately one in 300 individuals is a homozygous
mutant with low or negligible detoxification activity. If
these latter patients are treated with standard doses of
thiopurine drugs, they are at higher risk of potentially fatal
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haematological toxicity [61]. On the contrary, patients with
very high TPMT activity are more likely to be non-responders
to treatment with azathioprine or 6-mercaptopurine [62]. In
addition, the elevated TPMT activity may also translate into
hepatotoxicity due to the formation of metabolites other than
6-TGNs, such as 6-methylmercaptopurine ribonucleotides (6-
MMPN) [63, 64].

In several independent studies, the determination of the
TPMT genotype has shown excellent concordance with the
TPMT phenotype [65, 66]. Even though many TPMT allelic
variants have been identified to date, up to 95% of the
defective TPMT activity can be explained by just the most
frequent mutant alleles, namely TPMT*2, TPMT*3A and
TPMT*3C [67].

It is of note that the fact that patients with low TPMT
activity often develop myelossuppression does not imply
the opposite, i.e., that every patient with these symptoms
has low TPMT activity. For example, McGovern et al. [68]
found that only one out of 22 patients who were intolerant
to azathioprine had an intermediate TPMT activity, with the
remaining 21 patients having normal TPMT activities.
Another limitation to the use of genetic tests with
thiopurine drugs was recently highlighted by Winter et
al. [69], who suggested that measurement of TPMT
phenotype may be superior to genotype in predicting
severe myelossuppression. The results of their study
showed that a moderate reduction of erythrocyte TPMT
activity in heterozygotes was not associated with toxicity,
while very low TPMT activity in one heterozygote caused
severe myelosuppression. The authors concluded that this
would have been predicted by measuring TPMT activity,

but not by genotyping. In any case, the FDA has approved
safety labelling changes for thiopurine drugs, alerting
prescribers to the possibility of TPMT status measurement
to reduce the risk of developing life-threatening myelo-
suppression in patients found to be TPMT deficient
(Table 1). Despite a certain controversy, raised mostly
because the frequency of TPMT-deficient individuals is as
low as 0.3% and because WT patients may also develop
myelotoxicity [70], most of the pharmacoeconomic studies
carried out to date seem to favour the prospective TPMT
activity [71–74].

The assessment of a normal TPMT genotype does not
exclude the usefulness of TDM during patient follow-up as
a complementary tool to optimize therapy with azathio-
prine. Indeed, routine measurements of 6-TGN and 6-
MMPN metabolites are perhaps more important than
genotyping when choosing the appropriate course of
therapy for nonresponders and patients suspected of
incomplete compliance [42].

Anticancer drugs

In oncology, new genetic technologies are characterizing
patients biologically, with the aim to drive more effective
cancer treatment and more efficient cancer drug development.

Cetuximab/panitumumab

The epidermal growth factor receptor (EGFR) is a receptor
tyrosine kinase of the ErbB family that is abnormally
activated in many epithelial tumors. Several mechanisms

Drug Genomic biomarker Availability of TDM assay

Abacavir HLA-B*5701 Yesc

Antidepressants (tricyclic) CYP2D6 variants Yes

Antipsychotics (typical) CYP2D6 variants Yes

Azathioprine TPMT Yes

Carbamazepine HLA-B*1502a Yes

Cetuximab EGFR expression and K-RAS Yesc

Dasatinib Ph1 chromosome Yesc

Efavirenz CYP2B6*6b Yesc

Imatinib Ph1 chromosome, c-KIT expression Yesc

Irinotecan UGT1A1*28 No

Maraviroc CCR5 expression Yesc

6-Mercaptopurine TPMT Yes

Panitumumab EGFR expression and K-RAS Yesc

Phenytoin CYP2C9 variants, HLA-B*1502a Yes

Tacrolimus CYP3A variants Yes

Tamoxifen CYP2D6 variants Yesc

Trastuzumab HER2/NEU overexpression No

Warfarin CYP2C9 variants; VKORC1 variants No

Table 2 List of representative
drugs for which pharmacoge-
netic biomarkers and/or
therapeutic drug monitoring
have demonstrated usefulness
for improving drug efficacy and/
or avoiding toxicity

For abbreviations, refer to the
footnotes of Table 1
a For patients with an Asian
ancestry
b the genetic biomarker is not in
the list of FDA-approved drug
labels
c no not used routinely
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lead to the receptor's aberrant activation that is observed in
cancer, including receptor overexpression, mutation, ligand-
dependent receptor dimerization and ligand-independent
activation. Two classes of anti-EGFR agents are currently
approved for the treatment of patients with cancer. First,
cetuximab and panitumab are two monoclonal antibodies
directed at the extracellular domain of the receptor;
secondly, dasatinib and imatinib are oral, low-molecular-
weight, adenosine triphosphate-competitive inhibitors of
the receptor's tyrosine kinase.

Anti-EGFR monoclonal antibodies have demonstrated
activity in the therapy of advanced colorectal carcinoma
and in a variety of epithelial tumor types, including head
and neck cancers and non-small cell lung cancer. Major
efforts are focusing on identifying molecular markers that
can predict those patients more likely to respond to anti-
EGFR therapy [75].

The concept of basing clinical decisions regarding
cancer patient management with anticancer drugs on
genetic testing results is controversial. Some authors have
stated that colorectal cancer patients with EGFR-negative
tumors have the potential to respond to cetuximab-based
therapies. EGFR analysis by current immunohistochemistry
techniques does not seem to have a predictive value, and
the selection or exclusion of patients for cetuximab therapy
does not seem to be warranted. According to these authors’
statements, no patient should be denied treatment with an
EGFR-targeting agent solely on the basis of a negative
EGFR immunohistochemistry test result, and no patient
should be given anti-EGFR therapy simply on the basis of a
positive or strongly positive EGFR test result [76, 77].

A recent re-evaluation of clinical data across seven
randomized clinical trials of patients with metastatic
colorectal cancer has prompted the FDA to modify the
usage label of cetuximab and panitumab. Accordingly, both
drugs should be prescribed only to individuals whose
tumours harbour the non-mutated or WT form of the K-
RAS gene (Table 1) as this therapy had not shown a
treatment benefit for patients carrying the K-RAS mutations
in codon 12 or 13 [78].

Although part of the interindividual differences in
response to monoclonal antibodies may be explained by
interindividual variability in pharmacokinetics, TDM of
monoclonal antibodies is not carried out routinely. There-
fore, an assay measuring the concentrations of these drugs
may be useful for the interpretation and dose individuali-
zation of these drugs (Table 2) [79].

Dasatinib/imatinib

Chronic myeloid leukemia (CML) is characterized by the
presence of the Philadelphia (Ph) chromosome, which
results from a reciprocal translocation between the long

arms of chromosomes 9 and 22 t(9;22)(q34;q11). This
translocation creates two new genes, BCR-ABL on the 22q-
(Ph) chromosome and the reciprocal ABL-BCR on 9q-. The
BCR-ABL gene encodes for a 210-kDa protein with
deregulated tyrosine kinase (TK) activity, which is crucial
for malignant transformation in CML. The recognition of
the BCR-ABL gene and corresponding protein led to the
synthesis of small-molecule drugs designed to interfere
with BCR-ABL. The rational development of drugs target-
ing BCR-ABL has significantly improved the treatment of
CML. Imatinib (a BCR-ABL tyrosine kinase inhibitor)
produces haematological and cytogenetic remissions across
all phases of CML and is the current standard of care.
Imatinib resistance occurs in a significant proportion of
patients, and the mechanisms of resistance include BCR-
ABL mutations and activation of alternate oncogenic
pathways. Dasatinib is a novel, potent, multi-targeted oral
kinase inhibitor. Preclinical and clinical investigations have
demonstrated that dasatinib effectively overcomes imatinib
resistance and has further improved the treatment of CML.
Dasatinib was approved by the FDA for use in Ph-positive
leukaemias in patients who are resistant or intolerant to
imatinib (Table 1) [80].

TDM of the selective inhibitors of tyrosine kinases
dasatinib and imatinib may contribute to filling the current
knowledge gaps in the pharmacokinetics/pharmacodynam-
ics relationships of the drugs and better define their
therapeutic ranges in different patient populations [81].

Irinotecan

Irinotecan has advanced in the last years to become an
important cytostatic drug in the treatment of colorectal
carcinoma, particularly in those patients refractory to 5-
fluoruracil. It is activated in hepatocytes and tumour cells to
SN-38, a potent topoisomerase I inhibitor, which is in turn
conjugated (detoxified) by UDP glucuronosyltransferase
1A1 (UGT1A1) to SN-38 glucuronide. Gupta and cow-
orkers [82] first reported that the extent of this glucuroni-
dation is inversely correlated with gastrointestinal toxicity
and suggested that the variability in this detoxification step
is of genetic origin. Shortly after these findings were made
known, a functional polymorphism was identified in the
UGT1A1 gene (UGT1A1*28); this allelic variant consisted
of an extra TA repeat (7 versus 6) in the promoter sequence
and was associated to a decreased glucuronidation rate [83,
84]. In accordance with the described effect of this
polymorphism, carriers of the *28 allele showed a lower
rate of SN-38 glucuronidation and were more susceptible to
irinotecan-induced toxicity [85]. Subsequent studies
revealed a relative risk of 9.3 for grade 4 neutropenia in
carriers of the homozygous genotype (7/7) versus the rest of
the patients [86]. This 7/7 genotype was also found to be
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prevalent in patients with irinotecan grade 3/4 diarrhea and
neutropenia [87]. There may be other polymorphisms in the
coding regions of UGT1A1, which may or may not be in
linkage disequilibrium with UGT1A1*28 and which could
be contributing to the variability in the glucuronidation of
the SN-38 metabolite. For example, UGT1A1*6 and*27
alleles as well as combinations with other SNPs are also
candidates to be tested for more individualized irinotecan
chemotherapy, especially among the Asian population
where these allele frequencies are higher [88–91].

These and other similar findings led the FDA in 2005 to
amend the package insert for irinotecan to include a
recommendation, but not a requirement, to test for the
*28 UGT1A1 variant to predict those at risk for neutropenia
(Table 1) [13]. In response to these changes, a number of
commercially available assays have been developed to
determine the presence of this polymorphism. As suggested
by the above-mentioned studies, these tests should be used
by clinicians to identify patients at risk of suffering severe
toxicity who must therefore be treated with lower starting
irinotecan doses.

The determination of UGT1A1*28 seems to be an
example of practical pharmacogenetics that may be rou-
tinely applied. However, the work is far from being over
because UGT1A1 genetic testing may be limited in its
general applicability in diverse populations, such as
African, Americans and Hispanics, that are currently
underrepresented in pharmacogenetic studies [13]. Second-
ly, a relatively inexpensive biomarker, total serum bilirubin,
is available as a clinical predictor of liver function and as a
surrogate marker of UGT1A1 enzyme function and severe
neutropenia before the administration of irinotecan. Third,
the test does not include specific dosing recommendations
and instructions on how to interpret the results [13].

Additional strategies have been suggested, and these
include the standardization of safe and efficacious doses for
the 6/6, 6/7 and 7/7 genotypes, the determination of
whether resistance to treatment is also associated to this
genetic variability, the inclusion of other minor genotypes,
such as those consisting of 5 or 8 repeats, or the
identification of other key polymorphisms in non-
Caucasian populations [92].

Tamoxifen

Tamoxifen has been the most important therapeutic agent
for the treatment of estrogen receptor (ER)-positive patients
with breast cancer for the past three decades. Several lines
of evidence indicate that most of the tamoxifen antiproli-
ferative effects in breast cancer models are mediated by the
metabolites 4-hydroxytamoxifen and endoxifen, with a
different mode of action for endoxifen being suggested
[93]. The drug’s activation is mainly mediated by the

polymorphic enzyme CYP2D6, which catalyses the con-
version of tamoxifen into the active metabolite endoxifen
[94]. The impact of low-activity CYP2D6 genotypes on
tamoxifen metabolism has been examined, and reduced
endoxifen levels have been found [95, 96]. These results
prompted Goetz et al. [97] to perform a study in 223
women with early-stage ER-positive breast cancers treated
with tamoxifen; the results showed that patients homozy-
gous for the CYP2D6 *4/*4 genotype (CYP2D6 PMs) had
a worse recurrence–free time and disease-free survival but a
lower incidence of hot flashes compared with women with
one or zero *4 alleles, as they would have lower levels of
the active metabolite endoxifen. On the contrary, a study by
Wegman et al. [98] reported that *4/*4 carriers had a better
disease-free survival than WT patients, although the
difference did not reach statistical significance and only
the CYP2D6*4 variant allele was analyzed.

A later study demonstrated that the inclusion of
concomitant use of CYP2D6 inhibitors in the analysis
strengthened the significance of the association between
low CYP2D6 enzyme activity (either by genotype or drug
interaction) and worse breast cancer prognosis (hazard ratio
for relapse in PMs=3.12) [99]. Thus, knowledge of the
pharmacogenetic variation known to abrogate CYP2D6
enzyme activity may provide a means by which the
hormonal therapy of breast cancer can be individualized
[100]. Schroth et al. [101] recently demonstrated, for the
first time, an association between CYP2D6 genetics and
clinical outcome of tamoxifen. Their study was a retro-
spective analysis that included a large cohort of 1,325
breast cancer patients treated with adjuvant tamoxifen for
early-stage disease. There was a variant-allele dose-
dependent increase of the incidence of recurrence and
death events among CYP2D6 phenotypes. Patients lacking
CYP2D6 enzyme function (PMs) had the highest rates,
with an almost twofold increased risk of developing breast
cancer recurrence compared with patients with two func-
tional CYP2D6 alleles (EMs). The effect was lower in
patients with intermediate impairment of enzyme function
(heterozygous EMs/IMs), underscoring the primary role of
CYP2D6-mediated tamoxifen activation to its active me-
tabolite; (i.e., endoxifen [93]). The relationship between the
number of functional alleles and clinical outcome was
further evident for CYP2D6 UMs (2.3% of all patients)
who accounted for the best tamoxifen outcome [101].

No indication for the use of the test has yet reached
guideline status but, based on the findings mentioned
above, the FDA is currently weighing the possibility of
including a recommendation in the drug label on the use of
CYP2D6 testing to improve clinical outcomes in postmen-
opausal women with ER-positive breast cancer who are
CYP2D6 PMs. The availability of microarray hybridization
methods, such as the AmpliChip [102], makes the rapid
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analysis of DNA for the genotyping of many different
CYP2D6 genotypes possible, and the benefits of these tests
are obvious for these patients.

Finally, further evaluation of TDM approaches is needed
to determine whether the assessment of tamoxifen in
plasma could be useful as a complementary tool for guiding
drug dosage in breast cancer patients [103].

Trastuzumab

Trastuzumab is a recombinant humanized monoclonal
antibody directed against human EPGR 2 (HER2), whose
use as an adjuvant in chemotherapy has resulted in
outstanding hazard ratios for breast cancer recurrence
compared with chemotherapy alone [104, 105]. According
to the FDA-approved drug label, detection of HER2 protein
overexpression is necessary for the selection of patients
suitable for receiving therapy with trastuzumab (Table 1)
[106]. The downside to this discussion is that there is
variable risk of trastuzumab-induced cardiotoxicity that
depends mainly on the concomitant medication [107]. A
recent report indicates that this cardiotoxicity may also be
significantly associated to a polymorphism-generating
valine instead of isoleucine at position 655 in the HER2
gene [108]. However, even though (1) it would be easy to
genotype patients prior to starting trastuzamab therapy and
(2) the adverse effect ADR is serious enough to justify the
screening, the great antineoplastic efficacy shown by
trastuzamab makes it difficult to predict whether these
genetic tests will routinely be applied in the near future.

Anticoagulant drugs

Warfarin

Warfarin was first developed as a rodenticide in the 1940s
and introduced into clinical practice in the 1950s. It was
soon obvious that warfarin had an extraordinarily low
therapeutic index and, hence, a tremendous variability in
drug response, with patients at risk of excessive bleeding or
therapeutic failure if the doses were too high or too low,
respectively. In this regard, Pirmohamed and coworkers
[109] identified warfarin as a causal agent in 10% of cases
of all hospital admissions for ADRs in England.

The increasing interest in pharmacogenetics in the last
years has made possible to identify genes that may have an
impact on the outcome of warfarin treatment, the most
widely used medicine for which a pharmacogenetic test has
ever been proposed. The first gene to be studied was
CYP2C9, which is responsible for the hepatic biotransfor-
mation of warfarin to inactive metabolites excreted in the
urine. Two variant alleles, CYP2C9*2 and CYP2C9*3, both
displaying frequencies of approximately 10% in Caucasians

[110], code for a defective enzyme that metabolizes
warfarin, and both have been associated with an increased
risk of bleeding during warfarin induction [111–114].

The other focus of those pharmacogenomic studies on
anticoagulant treatment has been the vitamin K epoxide
reductase complex subunit 1 (VKORC1) gene, whose
product is inhibited by the warfarin mechanism of action.
Rieder and coworkers [115] identified ten non-coding SNPs
in this gene that could be used to infer different haplotypes.
These results were reproduced by another research group
[116], which showed that carriers of the VKORC1*2
haplotype require much lower warfarin doses than other
patients, and they display a higher coefficient of variation
of prothrombin time-International Normalized Ratio (INR),
and a higher percentage of INR values outside the
therapeutic interval.

In 2007, the FDA modified warfarin labelling to suggest,
but not mandate, that clinicians consider warfarin pharma-
cogenetic testing before initiating therapy (Table 1). The
CYP2C9*2, CYP2C9*3 and VKORC1 polymorphisms are
the main SNPs considered for establishing an adequate
warfarin dose. However, only about one third of all dosing
variation is explained by the combined assessment of
CYP2C19 and VKORC1 variants [117]. In order to effect
further improvement of the initial warfarin dose, some
authors [118] have suggested the inclusion of other SNPs,
such as the non-common mutations in the VKORC1 gene
(e.g. Asp36Tyr polymorphism [119, 120]), polymorphisms
in clotting factors II, VII and IX [121–123] or the C3435T
polymorphism located in exon 26 of the ABCB1 gene
[124]. Other known clinical factors that can contribute to
this high variability (up to a 30%) are age, gender, body
mass index and pharmacological interactions [125].

These genetic data have been added to clinical records to
build algorithms as predictive models of adequate warfarin
dose. A number of these algorithms can be found in the
literature, and regression models that can explain over 50%
of the variability in the warfarin dose have been obtained
[126–130]. It is of note that one of these studies reported an
impressive accuracy (R2 value of 79%) in estimating the
warfarin dose [131].

However, these algorithms have a number of limitations.
For example, they are usually developed for inpatients with
accessible INR daily monitoring data, whereas many
patients begin the anticoagulant therapy in an outpatient
setting. Although several studies have confirmed that
warfarin can be used safely in older people (>75 years)
who have previously been free from significant adverse
effects ADRs, careful monitoring of the INR would appear
to be critical [19]. Furthermore, as age is an important factor
to consider for warfarin dosing [128, 132, 133], it may be
difficult to apply algorithms created for middle-aged
patients to elderly subjects, the usual recipients of the drug.
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In contrast, the use of a pharmacogenetic algorithm for
estimating the appropriate initial dose of warfarin appears
to be a valuable tool in the 46.2% of the population that
requires ≤21 mg warfarin per week or ≥49 mg per week for
therapeutic anticoagulation [134]. The investigation of a
multiple regression model in the largest prospective
warfarin-treated cohort to date, using the predictors
CYP2C9, VKORC1, age, sex and drug interactions,
explained 59% of the variance in warfarin dose, supporting
genetic forecasting through the initiation of warfarin guided
by pharmacogenetics to improve clinical outcome [130]. In
agreement with this, a genome-wide association study in a
large sample size of 1,053 Swedish subjects, sufficiently
powered (80%) to detect genome-wide significance and
applying multiple regression to adjust for known influences
on warfarin dose, confirmed the role of VKORC1, CYP2C9
and CYP4F2 as principal genetic determinants of warfarin
dose [135].

At the present time, dose adjustment of warfarin through
INR monitoring and other clinical factors that influence
warfarin dosing is receiving the most attention [117] but,
fortunately, warfarin pharmacogenetic testing is commer-
cially available (Table 1). The results from these tests have
widely demonstrated their ability to help predict starting
and maintenance doses.

Anti-human immunodeficiency virus drugs

Abacavir

The guanosine reverse-transcriptase inhibitor abacavir is an
important antiretroviral treatment against infection with the
human immunodeficiency virus (HIV) and has been used
by almost 1 million patients infected with HIV during the
past decade [136]. The case of abacavir is the paradigm of
the utility of pharmacogenetic analyses in HIV therapy.

In white populations, hypersensitivity reactions (HSRs)
can be a major problem when implementing an antiretro-
viral drug treatment in HIV-infected patients. Thus, 5–8%
of patients that are administered abacavir develop a
potentially life-threatening drug hypersensitivity reaction
(HSR) characterized by fever, rash and symptoms in the
gastrointestinal tract, other organ systems, or both within
6 weeks of initiating therapy [137, 138].

The publication of reports containing evidence of
familiar predisposition and decreased frequency of hyper-
sensitivity reactions (HSRs) in subjects of African origin
was the first indication of the involvement of genetic
factors in determining the susceptibility to abacavir hyper-
sensitivity. These initial studies led to the identification in 2002
of the HLA-B*5701 polymorphism in the human leukocyte
antigene (HLA) gene as a predictive factor of abacavir-
induced hypersensitivity in Caucasians and Hispanics

[139–142]. For unknown reasons, the relationship between
HLA-B alleles and hypersensitivity reactions (HSRs) is
less clear within black populations. Furthermore, in
Asian populations, the frequency of HLA-B*5701 is very
low, thus restricting the usefulness of this pharmacoge-
netic biomarker mainly to whites [142]. This genetic
marker is sufficient to stratify susceptibility to abacavir
hypersensitivity reactions (HSRs) into categories of low-risk
(<1%) and high-risk (>70%) patients according to the absence
or presence of the HLA-B*5701 allele, respectively [143].
This variant allele-hypersensitivity reaction (HSR) association
seems to be even stronger when the M493T polymorphism
in the Hsp70-Hom gene is present in combination with
HLA-B*5701. An Australian group reported that this
combination was found in 94.4% of hypersensitivity
reaction (HSR) cases and only in 0.4% of controls. These
data indicate that the concurrence of HLA-B*5701 and
Hsp70-Hom M493T alleles is necessary for the development
of abacavir hypersensitivity [144].

It has been possible to apply these findings to clinical
practice (Table 1). For example, the implementation of
prospective HLA-B*5701 genetic screening was first adop-
ted in Western Australia and has had a critical impact in
reducing abacavir-induced hypersensitivity reactions
(HSRs) [145]. Moreover, based on their study of 561
abacavir-naive patients of different ethnicities in the UK,
the authors concluded that the implementation of pre-
treatment genetic screenings was able to reduce abacavir
HSRs to 0.5% from the 6.2% observed in a cohort of 300
patients treated before the screenings [146]. In addition, the
first results of PREDICT-1, a large-scale prospective
international randomized blinded study, released at the
“One Size Fits One—Treating the Individual” satellite
symposium at the International AIDS Society Conference
in Sydney (25 July 2007) further confirm these results, as
they show a reduction of HSRs in abacavir-naive patients
from 8 to 3.6% in those individuals subjected to prospective
genetic screening.

The potential widespread use of these genetic tests is
also dependant on cost-effectiveness. In this regard, Hughes
and colleagues [141] showed that pre-treatment screening
of HLA-B*5701 is a cost-effective tool to avoid abacavir
HSRs in Caucasians and Hispanics, as these populations
display an allelic frequency of at least 5%. However, it is
less cost-effective, as stated in the PREDICT-1 study early
results, in individuals of African and Asian origin, as these
populations seem to display a low allele frequency and,
consequently, a reduced risk of developing HSRs [142,
147].

One more condition to be fulfilled for the genetic tests
before they are routinely implemented in clinical practice is
that they need to be practical and accurate, given the
potential fatal effects of administering abacavir to a patient
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wrongly typed as HLA-B*5701-negative. A study by
Hammond et al. [148] tested the proficiency of HLA-
B*5701 typing among laboratories using sequence-specific
primer PCR and concluded that the participating HIV
testing laboratories are currently offering effective primary
screening to identify individuals at high risk of abacavir
HSRs.

In summary, it is clear that pharmacogenetic screening of
the HLA-B*5701 allele appears to be an effective pharma-
cogenetic test in white populations, with a high sensitivity
and modest specificity. It is also an accurate and cost-
effective technique that can significantly improve abacavir
therapy if included in the clinical routine. Its cost-
effectiveness in populations other than Caucasian and
Hispanics has yet to be determined in large-scale prospec-
tive studies such as PREDICT-1 and SHAPE.

To achieve optimal drug concentrations for viral sup-
pression and avoidance of drug toxicity, the monitoring of
drug levels has been considered to be essential [149].
However, there is currently no consensus on the signifi-
cance of TDM in the management of HIV infection.
However, despite a large variation of anti-HIV drug plasma
concentrations, single-measurement TDM seems to be a
sufficient approach for the routine assessment of the
majority of patients [150].

Maraviroc

The concept of chemokine (C-C motif) receptor 5 (CCR5)
antagonists introduces an additional molecular target. Due
to its unique mode of action with exclusive activity against
CCR5 tropic strains, viral tropism testing is mandatory
before CCR5 antagonists are used in the clinic [151].
Maraviroc (MVR) is approved by the FDA for use in HIV-1
infected patients for combination antiretroviral treatment of
adults infected with only CCR5-tropic HIV-1 who have
evidence of viral replication and HIV-1 strains resistant to
multiple antiretroviral agents [152]. Since a considerable
percentage of late-stage HIV patients still bear CCR5-tropic
viruses, the use of CCR5 antagonists appears to be
promising in properly selected treatment-experienced
patients [153].

Various methods for monitoring plasma concentrations
of maraviroc have been reported, but these are not used
routinely in HIV-infected patients for whom exposure,
tolerance and adherence assessments are critical [154, 155].

Efavirenz

CYP2B6 participates in the metabolism of important
therapeutic drugs, such as the non-nucleoside reverse
transcriptase inhibitors efavirenz and nevirapine, both of
which are used in the treatment of HIV infection [156].

There is a good understanding of the genetic variation of
CYP2B6 that allows the prediction of the pharmacokinetics
of efavirenz [50, 156, 157]. In contrast, there is no
consensus on the association of pharmacokinetics and
efavirenz neuropsychological toxicity. However, some
individuals that present neuropsychological toxicity may
benefit from dose reduction [38]. CYP2B6*6 is the most
common diminished-function allele across human popula-
tions and is associated to high plasma levels and central
nervous system adverse effects (ADRs) [156, 158]. A study
by Nyakutira et al. [159] showed a high prevalence of
CYP2B6*6 allelic variant and high plasma efavirenz levels
(50% of the participants above threshold of 4 mg/l). As
much as 76% interindividual variability in efavirenz drug
levels could not be explained by CYP2B6 genotyping
[159], thereby raising the question of whether TDM or
pharmacogenetic prediction should be used to optimize
efavirenz drug therapy. Additionally, to reach maximal
predictability, the analysis of multiple CYP2B6 alleles,
TDM and possibly genotyping of accessory metabolic
pathways of efavirenz would need to be considered [38,
150, 160].

Psychotropic drugs

Large interindividual differences in drug response and,
consequently, dosage requirement are well-known during
treatment with psychotropic drugs. Antidepressant and
antipsychotic drugs have a relatively narrow therapeutic
range, particularly the older antidepressants, and clinicians
have traditionally been concerned about the prevalence of
ADRs with psychoactive drugs, which may sometimes
mimic symptoms of the disease being treated. These
patients may, therefore, require increased doses of medica-
tion to counteract the ADR symptoms that may result due
to a higher risk of pharmacokinetics drug–drug interactions.
These considerations make it difficult for psychiatric
patients to comply with the therapeutic drug regimen.
Therefore, as suggested by Dahl and Sjöqvist [161] a
decade ago, drugs used for treating depression and
psychosis fulfill many of the criteria for the combined use
of TDM and pharmacogenetic methods for optimizing
dosage schedules.

With a few exceptions, psychoactive drugs are exten-
sively metabolized by enzymes in the cytochrome P450
family, of which the most important isoforms are CYP2D6,
CYP2C19, CYP1A2 and CYP3A. As the result of the
interplay between genetic and environmental factors, these
enzymes show pronounced variability between individuals.

Most clinically useful antidepressants and antipsychotic
drugs are metabolized by the polymorphic CYP2D6
enzyme. Indeed, the meta-analysis by Kirchheiner et al.
[162] revealed that the dosage of about 50% of these drugs
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is greatly dependent on the CYP2D6 genotype. In this
regard, the roles of the CYP1A2 and CYP3A metabolic
activities are also increasingly acknowledged.

CYP2D6 phenotypes are important factors in patients
taking tricyclic antidepressants (TCAs), venlafaxine, typical
antipsychotics and risperidone [12, 162]. The outcome of
treatments with antidepressants newer than TCAs may also
be affected by the presence of CYP2D6 variant alleles. For
example, venlafaxine has been suggested to be a candidate
for dosage individualization in the near future, as dysfunc-
tional CYP2D6 alleles have been associated to serious
adverse effects (ADRs) [163, 164]. The next few years will
determine whether CYP2D6 genotyping is beneficial for
patients taking the new drugs aripiprazole, duloxetine and
atomoxetine [12].

Another polymorphic enzyme, CYP2C19, is also in-
volved in the metabolism of psychotropic drugs and, hence,
the CYP2C19 PM phenotype is probably important in
patients taking TCAs and perhaps citalopram, escitalopram
and sertraline [12, 165].

Poor metabolizers have negligible CYP2D6 activity,
either because they carry two defective CYP2D6 allelic
variants (accounting for up to 7% of Caucasians) or because
of CYP2D6 inhibition. Patients having three or more active
CYP2D6 alleles (up to 29% in North African and Middle
Eastern populations) are called CYP2D6 UMs, and they
will probably show low plasma levels of CYP2D6
substrates and/or a lack of therapeutic response [6].
Therefore, it is also important to distinguish patients with
extremely low plasma concentrations of psychotropic drugs
that are metabolized by a duplicated CYP2D6 genetic
variant from those not complying with the prescription.

Pharmacogenetic methods may be clinically useful in
psychiatry to achieve optimal drug dosing. In a study of
100 consecutive psychiatric inpatients genotyped for
CYP2D6 on admission, the number of side effects was
higher and total duration of hospital stay longer among PM
psychiatric patients treated with drugs metabolized by
CYP2D6 [8]. In another study, Kawanishi et al. [166]
found an over-representation of duplicated CYP2D6 genes
(10%) in patients with persistent depression (non-response)
despite drug treatment, compared to a general Swedish
population (1–2%). Additionally, the cost of treating
outliers, patients of the UM or PM CYP2D6, is US
$4,000–6,000 per year higher than those of the IM or EM
phenotype [8]. In Italy and Spain, where gene duplication is
common, one out of ten patients might require increased
doses of CYP2D6 substrates [7].

In this context, the FDA completed in January 2005 its
approval of the first pharmacogenetic test, the AmpliChip
CYP450 Test, which assesses two polymorphic genes,
namely, CYP2D6 and CYP2C19, involved in the metabo-
lism of psychoactive drugs [12]. Genotype-based dose

recommendations—not requirements—for antidepressants
and antipsychotics have now been presented as a first step
toward sub-population-specific dosages. Kirchheiner et al.
[162] highlighted the importance of these two polymorphic
genes in a review of pharmacogenetic data on 36
antidepressants, concluding that for 14 of these antidepres-
sants, genetic variations at the CYP2D6 or CYP2C19 gene
locus would require at least a doubling of the dose in EMs
compared to PMs. However, the highly polymorphic nature
of the CYP2D6 gene (to date, more than 60 allelic variants
have been defined), and the resulting complexity of allele
combinations make the prediction of phenotype based on
genotype data particularly challenging [167].

Pharmacologic therapy of psychiatric disorders will
likely be more effective once the molecular pathogenesis
is known. However, very few schizophrenic patients share
identical genomic causation. This is probably due to
reduced fecundity, associated with severe mental disorders,
such as autism, schizophrenia and mental retardation,
leading to negative selection pressure on risk alleles that
may explain, in part, why common variants have not been
found that might confer risk to these disorders [168]. Thus,
rare variants may account for a larger fraction of the overall
genetic risk than previously assumed, thereby complicating
efforts to personalize treatment regimens in these patients
[168, 169]. It was disappointing that the analysis of 25
known functional genetic variants of several metabolizing
enzymes for five commonly used antipsychotic medications
(olanzapine, quetiapine, risperidone, ziprasidone and per-
phenazine) produced no significant associations with drug
dosing, safety, efficacy, tolerability, or risk for tardive
dyskinesia, making predictive genetic testing for these
drugs of little value in clinical settings [170].

The starting point for conventional TDM of tricyclic
antidepressants was the early demonstration of marked
interindividual differences in the plasma levels obtained at
the fixed doses used in the mid-1960s, the genetic control
of these levels and the concentration-dependent antidepres-
sant effects that were demonstrated, particularly for
nortriptyline, in controlled studies in several psychiatric
clinics. At the time, it was considered that the clinical
outcome could be improved and side effects avoided by
selecting a dose resulting in an apparent therapeutic range
of plasma concentrations [33, 34, 171]. In contrast to many
drugs used in somatic diseases, the dosage of psychoactive
drugs is difficult to optimize due to their slow onset of
action, unpredictable clinical effects with many non-
responding patients, side effects mimicking the disease
itself and interactions with other co-prescribed drugs.

Among the antidepressants, monitoring of essentially all
tricyclics and venlafaxine is strongly recommended in view
of their relatively well-established concentration–effect
relationships. In the case of amitriptyline, clomipramine,
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imipramine and venlafaxine, the measurements of their
active metabolites are also recommended. For the selective
serotonin reuptake inhibitors, the two higher classifications
for routine monitoring are not reached, but TDM is,
nevertheless, judged to be useful in selected cases. Recently,
much attention has been drawn to the TDM of fluoxetine
and, in particular, to the analysis of fluoxetine enantiomers
[172]. TDM is strongly recommended for the antipsychotics
clozapine, fluphenazine, haloperidol and olanzapine [36].
Interestingly, all neuroleptics that are metabolized by the
polymorphic CYP2D6 are considered to be strong TDM
candidates (chlorpromazine, fluphenazine, haloperidol, per-
phenazine, risperidone and thioridazine). The combination of
TDM and CYP2D6 genotyping seems to be particularly
useful in verifying concentration-dependent ADRs due to
poor metabolism and diagnosing pharmacokinetic factors
(ultrarapid metabolism) for drug failure.

Therefore, the integration of information on a patient’s
genotype and phenotype (assessed using TDM) provides a
rational basis for drug and dose selection and for dose
regimen optimization of many clinically useful psychotropic
drugs [31]. This approach is also valuable for the interpre-
tation of psychotropic drug response in the context of older
people with multiple comorbidities and complex polyphar-
macy [19]. Furthermore, inhibition or induction of drug
metabolism at the CYP level is probably the main reason
why the drug metabolic genotype does not reflect the
phenotype, which can be accurately assessed in TDM [161].

Antiepileptic drugs

Drug treatment of epilepsy is characterized by the unpre-
dictability of the efficacy of the drug, of ADRs and of
optimal doses in individual patients which, at least in part,
is a consequence of genetic variation. Since genetic
variability in drug metabolism was reported to affect the
treatment with phenytoin more than 25 years ago, the
ultimate goal of pharmacogenetics is to use the genetic
makeup of an individual to predict drug response and
efficacy as well as potential adverse drug events (ADRs).

The influence of pharmacogenetics in the metabolism of
antiepilepileptic drugs is not very striking; therefore, it is not
surprising that there are no treatment guidelines taking
pharmacogenetic data into account. In contrast, the traditional
and validated TDM approach, representing a direct 'pheno-
type' assessment, still remains the method of choice when an
individualized dosing regimen is anticipated [173, 174].

Carbamazepine

In Asian patients, the presence of a particular HLA allele,
HLA-B*1502, confers a higher risk for Stevens–Johnson
syndrome (SJS) or toxical epidermal necrolysis (TEN)

when carbamazepine is used [175]. Therefore, according to
medication labeling, prior to initiating therapy with carba-
mazapine, testing for HLA-B*1502 should be performed in
patients with ancestry in populations in which HLA-B*1502
may be present. In deciding which patients to screen, the
rates provided above for the prevalence of HLA-B*1502
may offer a rough guide, keeping in mind the limitations of
these figures due to wide variability in rates even within
ethnic groups, the difficulty in ascertaining ethnic ancestry
and the likelihood of mixed ancestry. Carbamazepine
should not be used in patients positive for HLA-B*1502
unless the benefits clearly outweigh the risks. Tested
patients who are found to be negative for the allele are
thought to have a low risk of SJS/TEN.

For genetically at-risk patients, high-resolution HLA-
B*1502 typing is recommended (Table 1). The test is
positive if either one or two HLA-B*1502 alleles are
detected and negative if no HLA-B*1502 alleles are
detected.

Phenytoin

Of all the antiepileptic drugs, only phenytoin undergoes
significant metabolism by cytochrome P450 isozymes,
mainly by CYP2C9 and to a lesser extent by CYP2C19.
CYP2C9 variant alleles, such as CYP2C9*3 or CYP2C9*6,
have been linked to severe toxicity [176, 177]; consequent-
ly, Kerb et al. [178] suggested that the analysis of CYP2C9
may have predictive value in the daily clinical practice.
Hung et al. [179] established a number of guidelines for
phenytoin dosage adjustment based on the impact of
CYP2C9 and CYPC19 polymorphisms on pharmacokinet-
ics data. In their study, doses ranged from 5.5–7 mg/kg/day
in double EMs to just 2–3 mg/kg/day in PMs of both genes.

Translating genotype data into a valid measure of drug
response (phenotype)

There is absolutely no doubt that genetic biomarkers can
play an important role in identifying responders and non-
responders, avoiding toxicity and adjusting the dosage of
drugs to optimize their efficacy and safety [180].

Historically, many of the classically defined pharmaco-
genetic traits were monogenic, whereby allelic variants at a
single gene locus produced clearly discernible population
phenotypes. It is now becoming increasingly apparent that
the majority of drug-response phenotypes are likely to
result from significant variation at multiple gene loci, and
the technological challenges of dissecting out the contribu-
tions of numerous genetic variants at multiple genes (on a
background of multiple environmental factors) and reduc-
ing this information to a predictive diagnostic test are
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formidable [13]. Therefore, despite significant progress in
pharmacogenetic research, the translation of these findings
into drug discovery, drug development or clinical practice
has proved to be surprisingly disappointing.

There are many gaps that limit the application of
pharmacogenetic information. First, the human genome is
unexpectedly complex, leading to many difficulties in
accurately and unequivocally describing genotypes and
phenotypes [167]. It is rather complex to focus on
candidate-genes for which there is some biological or
chemical reason to hypothesize their possible involvement
in the response to a particular drug, and many pharmaco-
genetic tests that evaluate only a few candidate genes miss
important contributions of variation in other genes, thereby
reducing the predictive value of the test and limiting its
application in different populations [10, 181]. Pharmacoge-
netic tests could be more clinically applicable if they
included a comprehensive survey of variation in the human
genome and appreciation of the multigenic nature of many
phenotypes of drug disposition and response.

Secondly, the achievement of a tight link between
genotype and the effect of a specific drug treatment
accounts only for 10–15% of all cases [182]. Most drug-
response phenotypes are shaped by a combination of
environmental, genetic and gene–environment interactions,
but we do have fragmentary information on how the
interplay between genetics and environment affects the
drug response. Therefore, an essential step on the road
toward delivery of pharmacogenetic information is to
develop and utilize efficient methods for identifying the
genetic and environmental variants affecting drug metabo-
lism and drug action [25, 29, 183]. For example,, older
people (especially those who are frail) are underrepresented
in pivotal clinical trials that are used to provide information
for optimal dose regimen decisions [19].

Epigenetics is among the many reasons for this inability
to identify an unequivocal genotype–phenotype association.
Failure to account for subject environment can have a
deleterious effect on the interpretation of genetic studies.
Although interindividual discrepancies in drug response are
often attributed to genetic heterogeneity, many of these
cannot be explained by DNA sequence variation. Fortu-
nately, there seems to be increasing appreciation of the
interaction of genes, drugs and the environment [184]. In
this context, pharmacoepigenetics potentially offers another
level of explanation for interindividual variations in drug
response that cannot be accounted for on the basis of
genetic polymorphism. The term ‘epigenetics’ refers to
phenotypic changes that do not involve any alteration in
DNA sequence offering the bridge that connects the
environment and the genome [185].

Third, the use of pharmacogenetic tests as a standard of
care for drug therapy has to overcome three significant

hurdles: (1) benefits relative to the use of the available
alternative biomarker (e.g., the INR for warfarin); (2) the
need for specific dosing guidelines and interpretation
resulting from testing; (3) the lack of drug efficacy is quite
as costly as drug toxicity, especially with expensive drugs
[186], and pharmacogenetic testing has to demonstrate
improvements not only in short-term toxicity but also in
long-term efficacy [13]. It is not sufficient that a pharma-
cogenetic test simply show a significant association with
outcomes. A new test should provide predictive capability
that augments our existing ability to predict drug response.
In addition, these tests should be designed to predict the
necessity of a change in dose or drug.

Finally, despite scientific findings, there are other
barriers that block the development and implementation of
pharmacogenetic tests. These include economic, commer-
cial, political, and educational barriers to the effective
communication of clinically useful information to practi-
tioners and patients [186, 187].

In order to obtain clinically and commercially robust
pharmacogenetic testing that can be applied, support from
regulatory agencies through the establishment of guidelines
is needed to potentiate specific drugs for which predictive
genotyping should be taken into consideration before drug
therapy is initiated.

Formal prospective controlled clinical trials would be,
however, an important step in reconciling pharmacoge-
netics and TDM as a way to understand the determinants of
drug response for many clinically useful drugs.
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