Skip to main content
Log in

Preparation of synthetic wood composites using ionic liquids

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Synthetic wood composite films containing cellulose, hemicelluloses, and lignin, the three major components of natural wood, were prepared in a room temperature ionic liquid solvent, 1-ethyl-3-methylimidazolium acetate, [EMIM][Ac]. Various synthetic wood composites were obtained by dissolution of individual wood components together with additives, including polyethylene glycol (PEG), chitosan, and multi-wall carbon nanotubes (MWNTs) in [EMIM][Ac]. The addition of water affords a gel that was dried in either a low humidity environment or under vacuum. Synthetic wood films showed smoother surface textures, higher water resistance, and higher tensile strengths than cellulose films formed by the same methods. Tailor-made synthetic wood composites were also prepared having a variety of desirable properties, including antimicrobial activities, controlled hydro-phobicity/philicity, high relative dielectric constant, and a high degree of cohesiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129

    Article  CAS  Google Scholar 

  • Bartkowiak M, Zakrzewski R (2004) Thermal degradation of lignins isolated from wood. J Therm Anal Calorim 77:295–304

    Article  CAS  Google Scholar 

  • Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part A Polym Chem 42:487–495

    Article  CAS  Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan B, Saddler JN (2007) Biofuels book series. Adv Biochem Eng Biotechnol 108:67–93

    PubMed  CAS  Google Scholar 

  • Chanzy H, Peguy A, Chaunis S, Monzie P (2003) Oriented cellulose films and fibers from a mesophase system. J Polym Sci Polym Phys 18:1137–1144

    Google Scholar 

  • Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. Phys Org Chem 18:275–297

    Article  CAS  Google Scholar 

  • Davé V, Glasser WG (1997) Cellulose-based fibres from liquid crystalline solutions: 5. Processing and morphology of CAB blends with lignin. Polymer 38:2121–2126

    Article  Google Scholar 

  • Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95:309–317

    Article  PubMed  CAS  Google Scholar 

  • El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N, N-Dimethylacetamide solvent system. Biomacromolecules 8:2629–2647

    Article  PubMed  CAS  Google Scholar 

  • Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    Article  CAS  Google Scholar 

  • Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1, 3-dialkylimidazolium formats. Biomacromolecules 7:3295–3297

    Article  PubMed  CAS  Google Scholar 

  • Gabrielii I, Gatenholm P (1998) Preparation and properties of hydrogels based on hemicelluloses. Appl Polym Sci 69:1661–1667

    Article  CAS  Google Scholar 

  • Goksu EI, Karamanlioglu H, Bakir U, Yilma L, Yilmazer U (2007) Production and characterization of films from cotton stalk xylan. Agric Food Chem 55:10685–10691

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Andey WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  PubMed  CAS  Google Scholar 

  • Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Agrgyropoulos DS (2007) Dissolution of wood in ionic liquids. Agric Food Chem 55:9142–9148

    Article  Google Scholar 

  • Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    Article  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Miyauchi M, Dordick JS, Linhardt RJ (2010) Preparation of biopolymer-based materials using ionic liquids for the biomedical applications. In: ACS symposium series ionic liquids application: pharmaceutical, therapeutics, and biotechnology 1038:115–134

  • Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocelluloses. Green Chem 10:177–182

    Article  CAS  Google Scholar 

  • Möller H, Grelier S, Pardon P, Coma V (2004) Antimicrobial and physicochemical properties of chitosan–HPMC-based films. J Agric Food Chem 52:6585–6591

    Article  PubMed  Google Scholar 

  • Novoselov NP, Sashina ES, Kuz’mina OG, Troshenkova SV (2007) Ionic liquids and their use for the dissolution of natural polymers. J Gen Chem 77:1395–1405

    Article  CAS  Google Scholar 

  • Pushparaj VL, Manikoth SM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible nanocomposite thin film energy storage devices. Proc Natl Acad Sci 104:13574–13577

    Article  PubMed  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F (2002) Biocatalysis in ionic liquids. Green Chem 4:147–151

    Article  CAS  Google Scholar 

  • Šimkovic I (2008) What could be greener than composites made from polysaccharides? Carbohydr Polym 74:759–762

    Article  Google Scholar 

  • Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646–655

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Hemicellulose bioconversion. J Am Chem Soc 124:4974–4975

    Article  PubMed  CAS  Google Scholar 

  • Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78

    Article  CAS  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  PubMed  CAS  Google Scholar 

  • Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Lin Y, Nan CW (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47:1096–1101

    Article  CAS  Google Scholar 

  • Zhao H, Baker BA, Song ZY, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705

    Article  CAS  Google Scholar 

  • Zhao Q, Yam RCM, Zhang B, Yang Y, Cheng X, Li RKY (2009a) Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 16:217–226

    Article  CAS  Google Scholar 

  • Zhao X, Koos AA, Chu BTT, Johnston C, Grobert N, Grant PS (2009b) Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold. Carbon 47:561–569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fangxiao Guan from the University of Connecticut for assistance in measurement of dielectrical properties. The authors would also like to thank Dr. Tom Doherty and Dr. Hong Wu for helpful discussion and HPLC measurement of hydrolyzed synthetic wood film. The authors acknowledge the support of Chisso Corporation and the Rensselaer Nanotechnology Center for their partial funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Linhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

226_2010_395_MOESM1_ESM.doc

HPLC results for standard glucose, xylose, and hydrolyzed synthetic wood film. UV–Vis for lignin content in acidic aqueous solution (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, T.J., Lee, S.H., Miao, J. et al. Preparation of synthetic wood composites using ionic liquids. Wood Sci Technol 45, 719–733 (2011). https://doi.org/10.1007/s00226-010-0395-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-010-0395-6

Keywords

Navigation