Skip to main content
Log in

The Effect of Caffeine on Calcitriol-Inducible Vitamin D Receptor-Controlled Gene Expression in Intestinal and Osteoblastic Cells

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Some epidemiological studies suggested caffeine consumption as the cause for bone mineral density loss. Certain genes involved in this process are regulated by vitamin D receptor (VDR). Therefore, we investigated if caffeine can affect inducible expression of VDR-regulated genes, some of them being involved in bone mineralization process. By employing reporter gene assay, polymerase chain reaction, and western blotting, we monitored the VDR activity and expression in cell cultures of intestinal (LS180), osteosarcoma (HOS), and normal human osteoblasts in vitro. While caffeine stimulated calcitriol-inducible VDR-dependent nanoluciferase activity in stable reporter cell line IZ-VDRE (derived from LS180), it rather modulated mRNA levels of target genes, like CYP24A1, BGLAP, SPP1, and TNSF11 in LS180 and HOS cells. However, caffeine significantly decreased calcitriol-inducible CYP24A1, TNSF11, and SPP1 transcripts in osteoblasts. This decrease had non-linear U-shaped profile. Our in vitro data demonstrate biphasic action of caffeine on the expression of certain calcitriol-inducible VDR-regulated genes in normal human osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fulgoni VL 3rd, Keast DR, Lieberman HR (2015) Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am J Clin Nutr 101(5):1081–1087

    Article  CAS  Google Scholar 

  2. Teekachunhatean S, Tosri N, Rojanasthien N, Srichairatanakool S, Sangdee C (2013) Pharmacokinetics of caffeine following a single administration of coffee enema versus oral coffee consumption in healthy male subjects. ISRN Pharmacol 2013:147238

    Article  Google Scholar 

  3. Chiang WF, Liao MT, Cheng CJ, Lin SH (2014) Rhabdomyolysis induced by excessive coffee drinking. Hum Exp Toxicol 33(8):878–881

    Article  Google Scholar 

  4. Jones AW (2017) Review of caffeine-related fatalities along with postmortem blood concentrations in 51 poisoning deaths. J Anal Toxicol 41(3):167–172

    Article  CAS  Google Scholar 

  5. Benowitz NL (1990) Clinical pharmacology of caffeine. Annu Rev Med 41:277–288

    Article  CAS  Google Scholar 

  6. Mediero A, Cronstein BN (2013) Adenosine and bone metabolism. Trends Endocrinol Metab: TEM 24(6):290–300

    Article  CAS  Google Scholar 

  7. Doepker C, Lieberman HR, Smith AP, Peck JD, El-Sohemy A, Welsh BT (2016) Caffeine: friend or foe? Annu Rev Food Sci Technol 7:117–137

    Article  CAS  Google Scholar 

  8. Hansen SA, Folsom AR, Kushi LH, Sellers TA (2000) Association of fractures with caffeine and alcohol in postmenopausal women: the Iowa Women’s Health Study. Public Health Nutr 3(3):253–261

    Article  CAS  Google Scholar 

  9. Hallstrom H, Wolk A, Glynn A, Michaelsson K (2006) Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos Int 17(7):1055–1064

    Article  CAS  Google Scholar 

  10. Harter DL, Busnello FM, Dibi RP, Stein AT, Kato SK, Vanin CM (2013) Association between low bone mass and calcium and caffeine intake among perimenopausal women in Southern Brazil: cross-sectional study. Sao Paulo Med J = Rev Paul de Med 131(5):315–322

    Article  Google Scholar 

  11. Grainge MJ, Coupland CA, Cliffe SJ, Chilvers CE, Hosking DJ (1998) Cigarette smoking, alcohol and caffeine consumption, and bone mineral density in postmenopausal women. The Nottingham EPIC Study Group. Osteoporos Int 8(4):355–363

    Article  CAS  Google Scholar 

  12. Kerner SA, Scott RA, Pike JW (1989) Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci USA 86(12):4455–4459

    Article  CAS  Google Scholar 

  13. Mosavin R, Mellon WS (1996) Posttranscriptional regulation of osteocalcin mRNA in clonal osteoblast cells by 1,25-dihydroxyvitamin D3. Arch Biochem Biophys 332(1):142–152

    Article  CAS  Google Scholar 

  14. Neve A, Corrado A, Cantatore FP (2013) Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 228(6):1149–1153

    Article  CAS  Google Scholar 

  15. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER et al (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390(6656):175–179

    Article  CAS  Google Scholar 

  16. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95(7):3597–3602

    Article  CAS  Google Scholar 

  17. Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL (2001) Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74(5):694–700

    Article  CAS  Google Scholar 

  18. Rapuri PB, Gallagher JC, Nawaz Z (2007) Caffeine decreases vitamin D receptor protein expression and 1,25(OH)2D3 stimulated alkaline phosphatase activity in human osteoblast cells. J Steroid Biochem Mol Biol 103(3–5):368–371

    Article  CAS  Google Scholar 

  19. Zenata O, Vrzal R (2017) Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications. Oncotarget 8(21):35390–35402

    Article  Google Scholar 

  20. Bartonkova I, Grycova A, Dvorak Z (2016) Profiling of vitamin D metabolic intermediates toward VDR using novel stable gene reporter cell lines IZ-VDRE and IZ-CYP24. Chem Res Toxicol 29(7):1211–1222

    Article  CAS  Google Scholar 

  21. Zenata O, Dvorak Z, Vrzal R (2018) Mycophenolate Mofetil induces c-Jun-N-terminal kinase expression in 22Rv1 cells: an impact on androgen receptor signaling. J Cancer 9(11):1915–1924

    Article  CAS  Google Scholar 

  22. Doricakova A, Theile D, Weiss J, Vrzal R (2017) Differential effects of the enantiomers of tamsulosin and tolterodine on P-glycoprotein and cytochrome P450 3A4. Naunyn-Schmiedeberg’s Arch Pharmacol 390(1):49–59

    Article  CAS  Google Scholar 

  23. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397(6717):315–323

    Article  CAS  Google Scholar 

  24. Su SJ, Chang KL, Su SH, Yeh YT, Shyu HW, Chen KM (2013) Caffeine regulates osteogenic differentiation and mineralization of primary adipose-derived stem cells and a bone marrow stromal cell line. Int J Food Sci Nutr 64(4):429–436

    Article  CAS  Google Scholar 

  25. Clemente N, Raineri D, Cappellano G, Boggio E, Favero F, Soluri MF et al (2016) Osteopontin bridging innate and adaptive immunity in autoimmune diseases. J Immunol Res 2016:7675437

    Google Scholar 

  26. Ferrari S, Rizzoli R, Manen D, Slosman D, Bonjour JP (1998) Vitamin D receptor gene start codon polymorphisms (FokI) and bone mineral density: interaction with age, dietary calcium, and 3’-end region polymorphisms. J Bone Miner Research: Off J Am Soc Bone Miner Res 13(6):925–930

    Article  CAS  Google Scholar 

  27. Garnero P, Munoz F, Borel O, Sornay-Rendu E, Delmas PD (2005) Vitamin D receptor gene polymorphisms are associated with the risk of fractures in postmenopausal women, independently of bone mineral density. J Clin Endocrinol Metab 90(8):4829–4835

    Article  CAS  Google Scholar 

  28. Fang Y, van Meurs JB, d’Alesio A, Jhamai M, Zhao H, Rivadeneira F et al (2005) Promoter and 3’-untranslated-region haplotypes in the vitamin d receptor gene predispose to osteoporotic fracture: the rotterdam study. Am J Hum Genet 77(5):807–823

    Article  CAS  Google Scholar 

  29. Jurutka PW, Remus LS, Whitfield GK, Thompson PD, Hsieh JC, Zitzer H et al (2000) The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 14(3):401–420

    Article  CAS  Google Scholar 

  30. Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M (2003) Effects of caffeine on human health. Food Addit Contam 20(1):1–30

    Article  CAS  Google Scholar 

  31. Harris SS, Dawson-Hughes B (1994) Caffeine and bone loss in healthy postmenopausal women. Am J Clin Nutr 60(4):573–578

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from Palacký University in Olomouc, PrF-2019-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radim Vrzal.

Ethics declarations

Conflict of interest

Ondrej Zenata, Adela Marcalikova, and Radim Vrzal declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ženata, O., Marcalíková, A. & Vrzal, R. The Effect of Caffeine on Calcitriol-Inducible Vitamin D Receptor-Controlled Gene Expression in Intestinal and Osteoblastic Cells. Calcif Tissue Int 105, 651–659 (2019). https://doi.org/10.1007/s00223-019-00602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00602-4

Keywords

Navigation